Study on System Reliability Updating through Inspection Information for Existing Cable-Stayed Bridges

2011 ◽  
Vol 250-253 ◽  
pp. 2011-2015 ◽  
Author(s):  
Jin Song Zhu ◽  
Jian Hui Wu

In order to accurately evaluate the reliability of the existing cable-stayed bridge, a method based on inspection information is proposed to update the system reliability. Using Bayesian method and inspection information, the modified model of cable-stayed bridge random variables is established, and then the failure probability of cable-stayed bridge components is updated. Theβ-Tcurves of changing rules of inspection information on system reliability index and service life are obtained. The method has been applied to a cable-stayed bridge, the results show that the proposed method is effective to update the system reliability and can predict the residual life of the existing cable-stayed bridges.

Author(s):  
S.V. Kolesnichenko ◽  
◽  
Y.V. Selyutyn ◽  
D.F. Obolonkov ◽  
O.S. Karapanov ◽  
...  

In order to assess the operational safety of steel constructions, the paper analyzes the principles of calculating the safety of structural steel constructions with consideration for the reliability index β at all phases of constructions operation and the design fundamentals of the reliability index β for both new constructions (at the design stage) and structural steel constructions in the conditions of the long-term operation. The task of safety and reliability calculations, first of all, consists in assigning normalized safety parameter values, i.e. normalizing the reliability index, the value of which should be strictly related to the consequence classes (CC), which are determining for setting the reliability coefficients for further calculations while designing the constructions. The article considers the calculation values β of the reliability index for constructions operated beyond the time limit for operation, with accumulated defects and damages. To improve the mechanism for calculating the reliability index value for the constructions operated beyond the maximum operating limit, with accumulated defects and damages, several tasks were set to determine such values β of the reliability index below which the construction is no longer considered to be operational and to define the reliability index values β for possible performance of renovation works (reconstruction, refurbishment) to strengthen and extend the remaining structural lifetime. Thus, emphasizing all of the aforementioned, the main conclusions to the article should be specified: at the stage of solving the issue of calculating the reliability index for structures being operated over the projected service life, with damages and initial defects accumulated during the operation period, it is required to perform their review and determine two main criteria for solving the issue of determining the reliability index, namely: to set such values of the reliability index below which the structure will be no longer operational, to define and set such values of the reliability index at which it is possible to carry out renovation works on steel structures, their reconstruction or repair. Considering the possibility of changing the reliability index compared to a new structure, given that the residual service life may be shorter than the design one, taking into account the economic factors and factors of probability of losing a person’s life, setting of such reliability index values is necessary for further possibility of the service life extension of a structure and determination of its residual life.


2017 ◽  
Vol 12 (4) ◽  
pp. 248-257
Author(s):  
Xiao-Yan Yang ◽  
Jin-Xin Gong ◽  
Yin-Hui Wang ◽  
Bo-Han Xu ◽  
Ji-Chao Zhu

The aim of this paper is to investigate the time-varying effect of stay cable of long-span cable-stayed bridges subject to vehicle load. The analysis has been carried out on the Su-Tong cable-stayed bridge in Jiangsu, China that has the second-longest span among the completed composite-deck cable-stayed bridges in the world currently. Probability models of vehicle load in each lane (fast lane, middle lane and slow lane) and cable stress under random vehicle load were developed based on the stochastic process theory. The results show the gross vehicle weight follows lognormal distribution or multi-peak distribution, and the time-interval of the vehicle follows a lognormal distribution. Then, the probability function of maximum cable stress was determined using up-crossing theory. Finally, the reliability of stay cable under random vehicle load was analysed. The reliability index ranges from 9.59 to 10.82 that satisfies the target reliability index of highway bridge structure of finished dead state.


2019 ◽  
Vol 12 (1) ◽  
pp. 56-62 ◽  
Author(s):  
A. O. Nedosekin ◽  
A. V. Smirnov ◽  
D. P. Makarenko ◽  
Z. I. Abdoulaeva

The article presents new models and methods for estimating the residual service life of an autonomous energy system, using the functional operational risk criterion (FOR). The purpose of the article is to demonstrate a new method of durability evaluation using the fuzzy logic and soft computing framework. Durability in the article is understood as a complex property directly adjacent to the complex property of system resilience, as understood in the Western practice of assessing and ensuring the reliability of technical systems. Due to the lack of reliable homogeneous statistics on system equipment failures and recoveries, triangular fuzzy estimates of failure and recovery intensities are used as fuzzy functions of time based on incomplete data and expert estimates. The FOR in the model is the possibility for the system availability ratio to be below the standard level. An example of the evaluation of the FOR and the residual service life of a redundant cold supply system of a special facility is considered. The transition from the paradigm of structural reliability to the paradigm of functional reliability based on the continuous degradation of the technological parameters of an autonomous energy system is considered. In this case, the FOR can no longer be evaluated by the criterion of a sudden failure, nor is it possible to build a Markov’s chain on discrete states of the technical system. Assuming this, it is appropriate to predict the defi ning functional parameters of a technical system as fuzzy functions of a general form and to estimate the residual service life of the technical system as a fuzzy random variable. Then the FOR is estimated as the possibility for the residual life of the technical system to be below its warranty period, as determined by the supplier of the equipment.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Ravi Mudragada ◽  
S. S. Mishra

AbstractMany researchers have carried out experimental and numerical investigations to examine building structures’ response to explosive loads. Studies of bridges subjected to blast loads are limited. Hence, in this study, we present a case study on a cable-stayed bridge, namely, Charles River Cable-Stayed Bridge-Boston, to assess its robustness and resistance against the progressive collapse resulting from localized failure due to blast loads. Three different blast scenarios are considered to interpret the bridge performance to blast loads. To monitor the progressive failure mechanisms of the structural elements due to blast, pre-defined plastic hinges are assigned to the bridge deck. The results conclude that the bridge is too weak to sustain the blast loads near the tower location, and the progressive collapse is inevitable. Hence, to preserve this cable-stayed bridge from local and global failure, structural components should be more reinforced near the tower location. This case study helps the designer better understand the need for blast resistance design of cable-stayed bridges.


2018 ◽  
Vol 5 (2) ◽  
pp. 139
Author(s):  
Salman Al Farisi ◽  
Rukmi Sari Hartati ◽  
I Wayan Sukerayasa

The need for electricity in this global era is increasing, so that a more reliable electrical system is needed. A reliable system cannot be separated from interference, so there needs to be a system reliability analysis and power loss to the feeder by configuring the network. This research was conducted to find the reliability index value in the form of interference frequency and duration of interference (SAIFI and SAIDI). In one Tabanan feeder the results obtained exceed the standard so reconfiguration is performed Based on the analysis obtained before reconfiguration, the reliability index for SAIFI is 6,7456 (failure / year) and SAIDI is 11,4767 (hour / year) and power loss by 6,27 %. After reconfiguration of Tabanan feeder, the reliability index was better, for SAIFI is 5.2475 (disturbance / year) and SAIDI is 9,8798 (hour / year), the power loss was 2.82%. Sanggulan feeder is a new feeder reconfiguration result from Tabanan feeder, where the analysis was carried out to find out the reliability index of Sanggulan feeder, it was obtained the SAIFI value of 4.5753 (disturbance / year) and SAIDI of 9.5297 (hour / year) and power loss of 4,80%.


2012 ◽  
Vol 568 ◽  
pp. 200-203
Author(s):  
Xiang Nan Wu ◽  
Xiao Liang Zhai ◽  
Ming Min Zhou

There exist evident shear-lag phenomena in large-span composite cable-stayed bridges under the action of axial force, especially in the deck with double main girders. In order to discuss the distribution law of the effective flange width coefficient along the span, caused by axial force, finite element computations of five composite cable-stayed bridges and theoretical analysis have been performed. The transmission angle of axial force caused by the axial compression of stay cables was given, meanwhile the formulas for computation effective slab width coefficient under axial force were suggested.


2021 ◽  
Author(s):  
Li Dong ◽  
Bin Xie ◽  
Dongli Sun ◽  
Yizhuo Zhang

<p>Cable forces are primary factors influencing the design of a cable-stayed bridge. A fast and practical method for cable force estimation is proposed in this paper. For this purpose, five input parameters representing the main characteristics of a cable-stayed bridge and two output parameters representing the cable forces in two key construction stages are defined. Twenty different representative cable-stayed bridges are selected for further prediction. The cable forces are carefully optimized through finite element analysis. Then, discrete and fuzzy processing is applied in data processing to improve their reliability and practicality. Finally, based on the input parameters of a target bridge, the maximum possible output parameters are calculated by Bayes estimation based on the processed data. The calculation results show that the average prediction error of this method is less than 1% for the twenty bridges themselves, which provide the primary data and less than 3% for an under-construction bridge.</p>


Author(s):  
Preston D. Vineyard ◽  
Brad J. Pease ◽  
Don Bergman ◽  
Armin Schemmann ◽  
Jacob E. Andersen ◽  
...  

<p>The Governor Mario M. Cuomo Bridge has replaced the existing Tappan Zee Bridge in New York. The new bridge was built by Tappan Zee Constructors, LLC. and is owned and operated by the New York State Thruway Authority (NYSTA). The new bridge is a 3.1 mile long crossing of the Hudson River and has an iconic main span structure, consisting of twin cable-stayed bridges, with 1,200’ main spans and 515’ side spans. Each new bridge carries four traffic lanes and the new crossing has been designed to accommodate the future addition of a rail bridge between the roadway decks. Utilizing a probabilistic-based service life design approach, the new bridge has been designed for a minimum 100-year service life before major maintenance for non- replaceable components, such as the foundations, sub-and superstructures. This paper provides the design features of the main span bridge and describes the design solutions, such as the use of fib Bulletin No. 34 to address the Service Life Design of the concrete components to address the durability challenges of this world- class project.</p>


Author(s):  
Tang Zhangchun ◽  
Lu Zhenzhou ◽  
Pan Wang ◽  
Zhang Feng

Based on the entropy of the uncertain variable, a novel importance measure is proposed to identify the effect of the uncertain variables on the system, which is subjected to the combination of random variables and fuzzy variables. For the system with the mixture of random variables and fuzzy variables, the membership function of the failure probability can be obtained by the uncertainty propagation theory first. And then the effect of each input variable on the output response of the system can be evaluated by measuring the shift between entropies of two membership functions of the failure probability, obtained before and after the uncertainty elimination of the input variable. The intersecting effect of the multiple input variables can be calculated by the similar measure. The mathematical properties of the proposed global sensitivity indicators are investigated and proved in detail. A simple example is first employed to demonstrate the procedure of solving the proposed global sensitivity indicators and then the influential variables of four practical applications are identified by the proposed global sensitivity indicators.


Sign in / Sign up

Export Citation Format

Share Document