Corrosion Behavior of Hot-Dip Galvanized Reinforcing Steel Using Electrochemical Impedance Spectroscopy

2011 ◽  
Vol 250-253 ◽  
pp. 222-227 ◽  
Author(s):  
Bi Lan Lin ◽  
Yu Ye Xu

Galvanizing on the surface of reinforcing steel is an effective measure to control corrosion of reinforcing concrete structures. The corrosion behaviors of hot-dip galvanized (HDG) reinforcing steel in simulated concrete pore solution (SCP solution) with various pH and chlodride values were investigated using electrochemical impedance spectroscopy (EIS). Two equivalent circuit models corresponding to the corrosion process were proposed and the evolution feature of the corrosion parameters were analyzed. The results show that when the SCP solution was carbonated seriously (pH<11), there is hydrogen evolution phenomenon and the corrosion resistance of HDG reinforcing steel is decreased. A minute carbonation of SCP solution (11.5≤pH<12.5) favors the further passivation of the zinc layer and the corrosion resistance is enhanced. The corrosion rate of HDG reinforcing steel at pH=12.0 is minimal, around 0.59 μm/year, whereas that at pH=12.5 is approximate 1.21 μm/year. In the conditions of pH=12.5 and NaCl concentration no more than 0.5wt.%, the corrosion resistance of the passivation film on HDG reinforcing steel is good. In a serious carbonation case, the corrosion rate is increased greatly with chloride ions.

2011 ◽  
Vol 105-107 ◽  
pp. 1797-1800
Author(s):  
Yu Ye Xu ◽  
Bi Lan Lin

Electrochemical impedance spectroscopy (EIS) technique was used to investigate the corrosion behavior of HRB400 reinforcing steel in Simulated Concrete Pore (SCP) solutions differently contaminated by bicarbonate ions and/or chloride ions. The corrosion kinetics parameters of the capacitance Y0-CPEdl, surface roughness n0-CPEdl and charge transfer resistance Rct of the electric double-layer capacitance of the interface of solution/HRB400 were analyzed and were compared to those of HPB235 reinforcing steel. The results show that the corrosion resistance index of HRB400 and HPB235 is increased with an increase in NaCl content to 0.1%, but that is decreased markedly for a larger NaCl content; and that of them is decreased largely with an increase in pH; the decrease extent of the corrosion resistance index of HRB400 with NaCl or pH is larger than that of HPB235; and the corrosion resistance of HRB400 is inferior to that of HPB235.


2015 ◽  
Vol 814 ◽  
pp. 132-136 ◽  
Author(s):  
Xian Yang Hua ◽  
Mei Feng He ◽  
Xiao Qin Zhou

Magnesium is one of the elements necessary for the body, is the man behind the body’s content of potassium ions within the cell are involved in a series of metabolic processes in vivo, including the formation of bone cells , acceleration of bone healing ability. Resulting from the good mechanical properties and biocompatibility, magnesium alloy is used in medical intervention material, but the high corrosion rate of magnesium alloys is the main drawback to their widespread use, especially in biomedical applications. There is a need for developing new coatings that provide simultaneously corrosion resistance and enhanced biocompatibility. In this work the medical magnesium alloy surface are dipped and coated with polylactic acid, so that obtain a dense uniform polylactic acid coating. And the corrosion resistance of the coating is studied in order to obtain controlled degradable and corrosion resisted magnesium alloy biological material. This paper mainly studies the influence of different concentrations of polylactic acid coating on AZ91D magnesium alloy corrosion resistance. The coated samples were immersed in Hank’s solution and the coating performance was studied by electrochemical impedance spectroscopy and scanning electron microscopy. This research is about the influence of the coating on the corrosion resistance of magnesium alloy through the open circuit potential, polarization curves, electrochemical impedance spectroscopy and Mott-Schottky. The results confirmed that the polylactic acid slow down the corrosion rate of AZ91D magnesium alloys in Hank’s solution. And along with the increase of poly lactic acid concentration, the corrosion resistance of magnesium alloys is improved. There is a wide variation of the corrosion morphology magnesium alloy AZ91D specimens after the surface modification using polylactic acid coating, compared with the unmodified.


2014 ◽  
Vol 912-914 ◽  
pp. 69-72
Author(s):  
D.R. Fang ◽  
L.W. Quan ◽  
J. Yang

Pure Cu samples were subjected to equal channel angular pressing (ECAP), and the corrosion resistance of the samples was investigated by potentiodynamic polarization measurements and electrochemical impedance spectroscopy measurements in 3.5% NaCl solution. The results show that the corrosion rate of the ultrafine-grained Cu decreases, in comparison with the coarse-grained Cu.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1091
Author(s):  
Tao Ma ◽  
Huirong Li ◽  
Jianxin Gao ◽  
Yungang Li

Research on improving the corrosion resistance of carbon steel has become a hot topic in the iron and steel field in recent years. Copper plating on the surface of carbon steel is considered an effective means to improve its corrosion resistance, but the copper-plated carbon steel material prepared by this method has the problems of poor abrasion resistance, easy delamination of copper layer and similar issues, which affect the service performance of the copper-plated carbon steel material. To solve this problem, a new type of material whose surface is copper and the copper element is gradually diffused into carbon steel was developed by a plating-diffusion method, which is defined as a copper-carbon steel gradient material. Carbon steel with a copper plated surface and the Cu-Fe/carbon steel gradient material with 80% Cu content on the surface were prepared by the same method. The cross-sectional microstructure and composition of different samples were analysed, and the corrosion behaviors of samples in 3.5% NaCl solution were studied by the linear polarization curve method and electrochemical impedance spectroscopy. The cross-sectional microstructure result shows that the diffusion of copper in carbon is mainly carried out along its grain boundary, and the diffusion of copper will inhibit the growth of grains during heat treatment. As shown in the results of corrosion behaviors, there is no pitting corrosion in the corrosion process of all samples, as well as the stable passive film. All samples showed active dissolution. Compared with carbon steel, the corrosion potential of the Cu/carbon steel gradient material becomes more positive from −600 mV to −362 mV,the corrosion current density decreases from 53.0 μA/cm2 to 30.6 μA/cm2 and the radius of electrochemical impedance spectroscopy enlarges while the corrosion resistance is improved, and the corrosion resistance is mainly obtained by its surface copper layer. The corrosion resistance of Cu-Fe/carbon steel gradient material is lower than that of Cu/carbon steel gradient material, while it is still better than carbon steel, and it shows a clear passivation trend during corrosion. Therefore, the copper/carbon steel gradient material can significantly improve the corrosion resistance of carbon steel. Even after the surface copper layer is destroyed, the gradient material can protect the matrix and improve the service life of the material.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 113
Author(s):  
Jacob Ress ◽  
Ulises Martin ◽  
Juan Bosch ◽  
David M. Bastidas

The protection of mild steel by modified epoxy coating containing colophony microencapsulated corrosion inhibitors was investigated in this study. The corrosion behavior of these epoxy coatings containing colophony microcapsules was studied by electrochemical analysis using cyclic potentiodynamic polarization and electrochemical impedance spectroscopy. The microcapsule coating showed decreased corrosion current densities of 2.75 × 10−8 and 3.21 × 10−8 A/cm2 along with corrosion potential values of 0.349 and 0.392 VSCE for simulated concrete pore solution and deionized water with 3.5 wt.% NaCl, respectively, indicating improved corrosion protection in both alkaline and neutral pH. Electrochemical impedance spectroscopy analysis also showed charge transfer resistance values over one order of magnitude higher than the control sample, corroborating the electrochemical corrosion potential and current density testing results. Overall, the use of colophony microcapsules showed improved corrosion protection in simulated concrete pore solution and DI water solutions containing chloride ions.


2014 ◽  
Vol 789 ◽  
pp. 495-500
Author(s):  
Bing Ying Wang ◽  
Qing Hao Shi ◽  
Wen Long Zhang

The polyurea was modified by adding different amounts of nanometer ZnO. The corrosion behavior of polyurea/primer composite coating system in wet-dry cyclic environment of 3.5% NaCl solution was studied by using the Electrochemical Impedance Spectroscopy (EIS) measurement and adhesion test technology. The experimental result showed that, different mass fractions of nanometer ZnO had different influences on the corrosion resistance property of coating. When the mass fraction of nanometer ZnO was 5%, the composite coating had the largest protective action. The corrosion resistance property of nanometer ZnO can be improved by increasing the density of polyurea coating, however, the corrosion resistance property of polyurea coating will be weakened in case of exceeding the critical adding amount.


Author(s):  
Sajjad Sadeghi ◽  
Hadi Ebrahimifar

Abstract The use of ceramic particles in the matrix of alloy coatings during the electroplating process has received considerable attention. These particles can create properties such as high corrosion resistance, insolubility, high-temperature stability, strong hardness, and self-lubrication capability. Herein, an Ni–P–W–TiO2 coating was deposited on an AISI 304L steel substrate using the electroplating method. Electroplating was performed at current densities of 10, 15, 20, and 25 mA · cm–2, and the effect of current density on microstructure, corrosion behavior, and wear behavior was investigated. The coatings were characterized by means of scanning electron microscopy. To investigate corrosion resistance, potentiodynamic polarization and electrochemical impedance spectroscopy tests were performed in a 3.5% NaCl aqueous solution. A pin-on-disk test was conducted to test the wear resistance of uncoated and coated samples. Sample micro-hardness was also measured by Vickers hardness testing. Examination of the microstructure revealed that the best coating was produced at a current density of 20 mA · cm–2. The results of potentiodynamic polarization and electrochemical impedance spectroscopy tests were consistent with microscopic images. The coating created at the current density of 20 mA · cm–2 had the highest corrosion resistance compared to other coated and non-coated samples. Furthermore, the results of the wear test showed that increasing the current density of the electroplating path up to 20 mA · cm–2 enhances micro-hardness and wear resistance.


2011 ◽  
Vol 284-286 ◽  
pp. 1550-1553
Author(s):  
Ming Sheng Li ◽  
Dan Zhang ◽  
Yi Ming Jiang ◽  
Jin Li

The soft-magnetic properties and service life of amorphous or nanocrystalline Fe73.5Si13.5B9Nb3Cu1 have been influenced by the corrosion of the alloy. In this study, the electrochemical corrosions of amorphous Fe73.5Si13.5B9Nb3Cu1 in the blend solutions of sodium chloride and sodium hydroxide were investigated by linear polarization (PLZ) and electrochemical impedance spectroscopy (EIS) technique. The presence of OH- in the blend solution gave rise to typical passivation of the alloy. A suitable concentration of OH- was required for the low corrosion rate. And the higher concentration of OH- led to a faster corrosion. Increase of concentration of Cl- aroused more obvious corrosion. These results were ascribed to the deteriorating effect of Cl- and high-concentration OH- on the passive film formed on the surface of amorphous Fe73.5Si13.5B9Nb3Cu1.


2012 ◽  
Vol 585 ◽  
pp. 488-492
Author(s):  
Adeeba F. Khan ◽  
Awanikumar P. Patil ◽  
T. Subba Rao

Cu-10Ni alloy suffers accelerated corrosion in sulfide polluted seawater. As an alternative, a new single phased, Cu-28%Zn-5%Ni-5%Mn-2%Fe alloy (hereby referred as CNZ-alloy) is developed and tested for the corrosion resistance in clean and sulfide polluted synthetic seawater. The CNZ-alloy showed better corrosion resistance than the standard Cu-10Ni alloy in both the test solutions i.e. clean and sulfide polluted synthetic seawater with . The results are discussed on the basis of polarization and electrochemical impedance spectroscopy. The better corrosion resistance of CNZ-alloy is attributed to the formation of protective ZnS and MnS2 films.


Sign in / Sign up

Export Citation Format

Share Document