A Study on the Welding Characteristics of Dissimilar Metal Using a High Power CW Nd:YAG Laser

2007 ◽  
Vol 26-28 ◽  
pp. 539-542
Author(s):  
Ho Jun Shin ◽  
Young Tae Yoo ◽  
Byung Heon Shin

Laser welding process is widely used in the industrial field due to its numerous advantages: a small heat affected zone(HAZ), deep penetration, high welding speed, ease of automation, single-pass thick section capability, enhanced design flexibility, and small distortion after welding. In this paper, the laser weldability of Austenite stainless steel and INCONEL600 at dissimilar metal welds using a continuous wave Nd:YAG laser are experimentally investigated. INCONEL600 is being used in a steam generator tubing of pressurized water reactor(PWR) exposed to some corrosion. Therefore stress corrosion cracking can occur on this material. A research work is conducted to determine effects of welding parameters, on eliminating or reducing the extent welding zone formation at dissimilar metal welds and to optimize those parameters that have the most influence parameters such as focus length, laser power and welding speed were tested.

2007 ◽  
Vol 345-346 ◽  
pp. 1445-1448 ◽  
Author(s):  
Ho Jun Shin ◽  
Young Tae Yoo ◽  
Byung Heon Shin ◽  
Ji Hwan Kim

Dissimilar metal welding (DMW) are used widely in various industrial applications due to the practical importance from the technical and economic aspect. However, DMW have several fabricative and metallurgical drawbacks that can often lead to in-service failures. For example, the most pronounced fabrication faults are hot cracks. Recently, DMW have used the several of heat source to decrease such as faults. Laser welding process has, in recent years, attracted more attention due to its special features: a small heat-affected zone and narrow weld bead due to the low heat input; welding at high speed; welding can be carried out in areas of difficult access; contactless energy transfer; welding in an exact and reproducible manner; possibilities for automation and robotization, and welding performed in various atmospheres. In this paper, the weldability on dissimilar metal welding of austenite stainless steel and carbon steel using Nd:YAG laser with a continuous wave was experimentally investigated.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1494
Author(s):  
Ran Li ◽  
Manshu Dong ◽  
Hongming Gao

Bead size and shape are important considerations for industry design and quality detection. It is hard to deduce an appropriate mathematical model for predicting the bead geometry in a continually changing welding process due to the complex interrelationship between different welding parameters and the actual bead. In this paper, an artificial neural network model for predicting the bead geometry with changing welding speed was developed. The experiment was performed by a welding robot in gas metal arc welding process. The welding speed was stochastically changed during the welding process. By transient response tests, it was indicated that the changing welding speed had a spatial influence on bead geometry, which ranged from 10 mm backward to 22 mm forward with certain welding parameters. For this study, the input parameters of model were the spatial welding speed sequence, and the output parameters were bead width and reinforcement. The bead geometry was recognized by polynomial fitting of the profile coordinates, as measured by a structured laser light sensor. The results showed that the model with the structure of 33-6-2 had achieved high accuracy in both the training dataset and test dataset, which were 99% and 96%, respectively.


2014 ◽  
Vol 22 (1) ◽  
pp. 93-98
Author(s):  
Pavol Švec ◽  
Viliam Hrnčiar ◽  
Alexander Schrek

AbstractThe effects of beam power and welding speed on microstructure, microhardnes and tensile strength of HCT600X laser welded steel sheets were evaluated. The welding parameters influenced both the width and the microstructure of the fusion zone and heat affected zone. The welding process has no effect on tensile strength of joints which achieved the strength of base metal and all joints fractured in the base metal.


2015 ◽  
Vol 1088 ◽  
pp. 807-813
Author(s):  
Miao Xia Xie ◽  
Lin Jie Zhang

In this work, effects of major welding parameters, such as laser power, defocus distance of laser beam, inter-heat sources distance and welding speed, on weld geometry were investigated for pulsed Nd:YAG laser/GTAW hybrid welding of 304 stainless steel. Heat transfer efficiency of pulsed Nd:YAG laser/GTAW hybrid welding process was quantitativly analyzed based on rosenthal equation. Furthermore, melting efficiency was determined from the measured welding seams cross section area.


2021 ◽  
Author(s):  
lanyu mao ◽  
Zongan Luo ◽  
Yingying Feng ◽  
Xiaoming Zhang

Abstract Vacuum roll-cladding (VRC) is an effective method to produce high quality ultra-heavy AISI P20 plate steel. In the process of VRC, reasonable welding process of electron beam welding (EBW) can significantly avoid welding cracks and reduce the cost. In this paper, the electron beam welding process of AISI P20 tool steel was simulated by using a combined heat source model based on finite element method, and the temperature field and stress field under different welding parameters were studied respectively . The results showed that welding parameters have a greater effect on weld penetration than that of weld width, which making the aspect ratio increases with the increase of welding current, and decrease with the increase of welding speed. The weld morphologies were consistent with those of the modeling and the measured thermal heat curves were good agreement with those of simulated, which was verified the feasibility and effectiveness of temperature fields. The results of stress fields under different welding parameters indicat ed that lower welding speed and higher welding current resulting in lower residual stress at welded joint, which means lower risk of cracking after EBW. The results of this study have been successfully applied to industrial production.


2021 ◽  
Vol 12 (1) ◽  
pp. 87
Author(s):  
Haikal Haikal ◽  
Moch. Chamim ◽  
Deni Andriyansyah ◽  
Apri Wiyono ◽  
Ario Sunar Baskoro ◽  
...  

<p class="Abstract">In this study, research on the use of the External Magnetic Field method – Tungsten Inert Gas was done to determine the effect of welding arc compression on the quality of <em>AISI 304 </em>thin plate weld. The welding process was performed using autogenous welds. In this study, an external magnetic field was generated by placing a magnetic solenoid around the <em>TIG</em> welding torch. Enabling this electromagnetic field is done dynamically using a microcontroller. Welding parameters used are welding current <em>100; 105; 110 A</em> and welding speed <em>1.6; 1.8; 2.05 mm/s</em>. The results of this study showed that <em>EMF-TIG</em> welding can produce a more uniform bead width along the weld line with a standard deviation of 0.08 compared with conventional <em>TIG </em>welding of <em>0.12</em>. Increased welding speed of  <em>2.05 mm/s</em> causes no effect on the addition of an external magnetic field to the width of the weld bead. The current parameters are <em>105 A </em>with a speed of <em>1.6; 1.8; 2.05 mm/s</em> resulted in compression of the top bead width by <em>0.87; 0.61; 0.1 mm</em>. The welding parameters with a current of 105 A and welding speed of <em>1.6 mm/s</em> have a larger upper bead compression effect of <em>0.84 mm</em> compared to <em>110 A</em> currents of <em>0.38 mm</em>. Moreover, the <em>D/W</em> ratio obtained under an external magnetic field was higher than without magnetic.</p>


Author(s):  
D. Sen ◽  
M. A. Pierson ◽  
K. S. Ball

The process of welding has a direct influence on the integrity of the structural components and their mechanical response during service. Welding is an inherently multiphysics problem, encompassing a large array of physical phenomena—fluid flow in the weld pool, heat flow in the structure, microstructural evolution/phase transformations, thermal stress development, and distortion of the welded structure. The mathematical model to simulate the coupled fields of the welding process has been outlined in Part I of the present study. In Part I, the developed model have been validated with experimental results and the depth/width (D/W) predictions agree well. Part II documents the effects of welding parameters (welding current/speed, electrode gap, and electrode angle) on the weld D/W ratio, for both low (≤40 ppm) and high (≥150 ppm) surface active agent (oxygen) content. The parametric characterization of the weld D/W ratio is validated with published experimental data. They agree well. Results show that increasing the oxygen content beyond 150 ppm does not increase the weld D/W ratio. At high oxygen content of 150 ppm and under current variation, the weld D/W ratio increases and remains constant beyond 160 A. However, when the welding speed is varied, the weld D/W ratio decreases with increasing speed. Similarly, increasing the electrode gap under high oxygen content decreases the weld D/W ratio. The weld D/W ratio shows weak variation with electrode tip angle. The results from the present simulations have also been used to predict the modes of weld solidification. With increase in welding speed, finer dendritic microstructures are expected to be formed near the weld centerline. The variation of weld D/W with heat input per unit length of weld is also presented elaborately. The workpiece deformation and stress distributions are also highlighted. The present study shows the pertinence of coupled welding process simulation to delineate the underlying physical processes and thereby better predict the behavior of welded structures.


2012 ◽  
Vol 201-202 ◽  
pp. 352-355
Author(s):  
Yong Hua Liu ◽  
Xiang Dong Gao

During deep penetration laser welding, a keyhole is formed in the molten pool. The characteristics of keyhole are related to the welding quality and stability. Analyzing the characteristic parameters of a keyhole during high power fiber laser welding is one of effective measures to control the welding quality and improve the welding stability. This paper studies a fiber laser butt-joint welding of Type 304 austenitic stainless steel plate with a high power 10 kW continuous wave fiber laser, and an infrared sensitive high-speed video camera was used to capture the dynamic images of the molten pools. A combination filtering system with a filter length of 960-990nm in front of the vision sensor was used to obtain the near infrared image and eliminate other light disturbances. The width, the area, the leftmost point, the rightmost point, the upmost point and the bottommost point of a keyhole were defined as the keyhole characteristic parameters. By using the image preprocessing method, such as median filtering, Wiener filtering, threshold segmentation and Canny edge detection methods, the characteristic parameters of a keyhole were obtained. By analyzing the change of the keyhole characteristic parameters during welding process, it was found that these parameters could reflect the quality and stability of laser welding effectively.


2008 ◽  
Vol 580-582 ◽  
pp. 355-358 ◽  
Author(s):  
Souta Matsusaka ◽  
Toshiro Uezono ◽  
Takuya Tsumura ◽  
Manabu Tanaka ◽  
Takehiro Watanabe

Galvanized steel sheets with a lap joint were welded by a laser-arc hybrid process. The hybrid system consisted of 2kW LD or YAG laser oscillator and frequency-modulated DC pulsed MAG welding machine. In this experiment, the arc traveled on the specimens, following the laser beam with the interval of 2 mm. The results showed that the hybrid process had some advantages, such as deep penetration depth, high welding speed and high gap-tolerance, in comparison with the conventional MAG welding. Observations from a high-speed digital video-camera suggested that the zinc and iron vapors induced by laser beam irradiation stabilized the arc plasma. Effects of the incidence angle between a welding head and a specimen on the weld bead formations were also discussed. As a result, the welding speed of 2.0 m/min was achieved at 1.0 mm of gap length condition when the incidence angle was 50 degree.


Sign in / Sign up

Export Citation Format

Share Document