scholarly journals Study of Laser Welding of HCT600X Dual Phase Steels

2014 ◽  
Vol 22 (1) ◽  
pp. 93-98
Author(s):  
Pavol Švec ◽  
Viliam Hrnčiar ◽  
Alexander Schrek

AbstractThe effects of beam power and welding speed on microstructure, microhardnes and tensile strength of HCT600X laser welded steel sheets were evaluated. The welding parameters influenced both the width and the microstructure of the fusion zone and heat affected zone. The welding process has no effect on tensile strength of joints which achieved the strength of base metal and all joints fractured in the base metal.

2018 ◽  
Vol 29 ◽  
pp. 12-18
Author(s):  
Lateef O. Mudashiru ◽  
Emmanuel O. Sangotayo ◽  
Samuel O. Alamu

The present study investigated the effect of operating parameters in modeling the output quality of welding process of steel sample. A three factor, three levels Box-Behnken Design (BBD) of RSM was applied to determine the effects of three independent variables (welding speed (A), welding current (B) and electrode potential (C)) on the tensile strength and to also develop a model for predicting the output quality. Data analysis shows that A, C, AB, BC, A2, B2and C2are the terms which significantly affected the ultimate tensile strength of the sample at 95% confidence level. The experimental values were very close to the predicted values and were not statistically different at p<0.05. The maximum tensile strength of 228 MPa was obtained at 250 A current, electrode diameter of 3.25 mm and 50 cm/min welding speed, respectively. The regression model obtained has provided a basis for selecting optimum process parameters for the improving output quality (tensile strength) of the welded steel sample.


2014 ◽  
Vol 353 ◽  
pp. 8-12
Author(s):  
Young Nam Ahn ◽  
Min Jung Kang ◽  
Cheol Hee Kim

Laser weldability was investigated for advanced high-strength steel sheets for automotive applications. Dual-phase steel (DP780) and martensitic steel (MS1300) sheets were employed as base materials; laser-butt and overlap welding experiments were conducted on combinations of steels with similar and dissimilar strength. The tensile strength and metallurgical morphology were analysed for the butt-welded specimens; tensile-shear strength and bead shapes were analysed for the overlap-welded specimens. Even with laser welding, martensite in the heat-affected zone disintegrated and resulted in a softened, heat-affected zone as compared with the base materials. The tensile strength of a butt weldment was determined by the strength of the heat-affected zone. The tensile-shear strength of an overlap weldment was determined by not only the strength of the heat-affected zone but also bead shapes such as blow holes, underfill, and the bead width at the faying surface.


2016 ◽  
Vol 879 ◽  
pp. 1459-1464
Author(s):  
V.V. Praveen ◽  
T.D. John ◽  
K.M. Peethambaran

To improve the weld quality of AA 5083 plate using AA 5356 filler rod, an automatic TIG welding system is developed, by which welding speed can be controlled and a uniform speed is obtained. Welding of aluminium 5083 plate is carried out for different welding currents and welding speeds. In this work, the effect of welding speed and current on, the tensile strength of the weld, hardness at the three different zones viz. weld metal, HAZ and base metal are investigated. The temperature is measured at the HAZ and base metal. The hardness and temperature on the weld zone and the base metal are greatly influenced by the welding speed and current. It is found that the weld strength is influenced by different values of weld current and speed, but sometimes with high current, welding speed has no specific effect on the tensile strength of the weld. The effect of material deposition rate on the weld strength in uniform welding is studied. The weld thickness to width ratio is an important aspect in the analysis of weld strength. The values obtained for current and speed are taken for optimizing the strength and hardness, using Taguchi method and utility concept.


Author(s):  
Jephthah A. Ikimi ◽  
Aigbovbiosa A. Momodu ◽  
Erhuvwu Totore

In welding, the quality of welded joints is greatly influenced by the welding process parameters. Thus, in order to achieve a good weld quality, there is exigency to select the right welding process parameters. The focus of this study is to investigate the effect of Metal Inert Gas (MIG) welding process parameters; welding current, welding voltage and welding speed on the tensile strength of mild steel AA10119 welded plates. The experiment was designed using Taguchi’s L9 orthogonal array with three levels. Kaierda MIG MAG Inverter CO2 Welder Model E-180 welding machine was used to conduct the experiments with three repetitions. From the analysis carried out by applying Taguchi’s method, the result shows that the welding speed and welding current have the most significant influence on tensile strength of the weld and an optimum parameter setting of A3B2C2 was suggested; welding current 240 A, welding voltage 25 V and welding speed 0.010 m/s. The mean tensile strength at this optimal setting A3B2C2 was predicted to be 442 N/mm2.


2021 ◽  
Vol 63 (1) ◽  
pp. 97-101
Author(s):  
İsmail Açar ◽  
Behçet Gülenç

Abstract The quality of welded joints depends on the most optimal welding parameters and the selection of shielding gas type. The shielding gas was selected for joining stainless steels through gas metal arc welding methods by considering properties such as chemical-metallurgical interaction of shielding gas and the molten weld metal during the welding process, heat transmission capability of the gas and cost. In this study, the effect of different shielding gas combinations on the mechanical and microstructural properties of 316 austenitic stainless steel joined by the metal inert gas (MIG) welding method was investigated. In the welding process, pure argon (100 % Ar), 98.5 % Ar + 1.5 % H2 and 95 % Ar + 5 % H2 were used as shielding gases. Tensile, hardness, and bending tests were conducted to determine mechanical properties of the welded samples. In addition, metallographic examinations were carried out to detect the macrostructural and microstructural properties of weld zones. According to the results obtained from the study, the highest tensile strength was obtained from the joints welded using 100 % Ar shielding gas. When the addition of H2 into the Ar gas increased, the tensile strength of the welded samples decreased. As a result of the tensile test, fractures occurred in the base metal in all welded samples. In all welding parameters, the hardness of the weld metal was lower as compared to the heat affected zone (HAZ) and the base metal. As a result of the bending test, crack and tearing defects were found in the weld zone.


10.30544/245 ◽  
2016 ◽  
Vol 22 (4) ◽  
pp. 269-284
Author(s):  
Jyoti Menghani ◽  
Kunal Dwivedi

The present investigation has two main objectives; first is optimization of welding process parameters of submerged arc welding (SAW) using Taguchi philosophy and second is to improve the mechanical properties such as strength and microhardness of weld joint by alloying with varying amounts of molybdenum. For optimization of welding process, parameters Taguchi philosophy have been applied on a mild steel plate (AISI C- 1020) of 10 mm thickness with 60o groove angle with arc voltage and welding speed as variables and bead width as output variables. A mathematical relationship between bead width, arc voltage and welding speed has also been found using multiple regression analysis for the present base metal plate geometry. After optimizing welding parameters, molybdenum has been added individually to the welding area in varying percentages. The properties of alloyed and unalloyed weld metal bead are compared. The mechanical characterization of weld has been done in terms of microhardness, tensile strength, whereas microstructural characterization has been performed using optical microscopy, XRD and EDS. The presence of molybdenum resulted in bainite structure in weld bead having a refined grain structure, enhancement in tensile strength and microhardness. The XRD results showed the formation of molybdenum carbides justifying the increase in microhardness value.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1494
Author(s):  
Ran Li ◽  
Manshu Dong ◽  
Hongming Gao

Bead size and shape are important considerations for industry design and quality detection. It is hard to deduce an appropriate mathematical model for predicting the bead geometry in a continually changing welding process due to the complex interrelationship between different welding parameters and the actual bead. In this paper, an artificial neural network model for predicting the bead geometry with changing welding speed was developed. The experiment was performed by a welding robot in gas metal arc welding process. The welding speed was stochastically changed during the welding process. By transient response tests, it was indicated that the changing welding speed had a spatial influence on bead geometry, which ranged from 10 mm backward to 22 mm forward with certain welding parameters. For this study, the input parameters of model were the spatial welding speed sequence, and the output parameters were bead width and reinforcement. The bead geometry was recognized by polynomial fitting of the profile coordinates, as measured by a structured laser light sensor. The results showed that the model with the structure of 33-6-2 had achieved high accuracy in both the training dataset and test dataset, which were 99% and 96%, respectively.


2012 ◽  
Vol 622-623 ◽  
pp. 323-329
Author(s):  
Ebtisam F. Abdel-Gwad ◽  
A. Shahenda ◽  
S. Soher

Friction stir welding (FSW) process is a solid state welding process in which the material being welded does not melt or recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters and tool pin profile play major roles in deciding the weld quality. In this investigation, an attempt has been made to understand effects of process parameters include rotation speeds, welding speeds, and pin diameters on al.uminum weldment using double shoulder tools. Thermal and tensile behavior responses were examined. In this direction temperatures distribution across the friction stir aluminum weldment were measured, besides tensile strength and ductility were recorded and evaluated compared with both single shoulder and aluminum base metal.


2021 ◽  
Vol 410 ◽  
pp. 299-305
Author(s):  
Artem S. Atamashkin ◽  
Elena Y. Priymak ◽  
Elena A. Kuzmina

In this work, pipe billets with a diameter of 73 mm and a wall thickness of 9 mm from steels 32G2 and 40KhN are friction welded with an aim to optimize the process parameters. The friction pressure, the forging pressure and the length of the fusion varied. After the implementation of various welding modes, tensile tests and metallographic studies were carried out. The optimal welding parameters have been established, which make it possible to obtain tensile strength at the level of the 32G2 base metal. The study results of the microstructure and SEM fractographs after the optimal welding mode are presented.


2020 ◽  
Vol 40 (1) ◽  
pp. 67-74
Author(s):  
Manigandan Krishnan ◽  
Senthilkumar Subramaniam

The force generation, joint mechanical and metallurgical properties of friction stir corner welded non-heat treatable AA 5086 aluminum alloy are investigated in this paper. The friction stir welding process is carried out with the plate thicknesses of 6 mm and 4 mm. The welding speed, tool rotational speed and tool plunge depth were considered as the process parameters to conduct the welding experiments. The machine spindle motor current consumption and tool down force generation during friction stir welding were analyzed. The microstructures of various joint regions were observed. The tensile samples revealed the tensile strength of 197 MPa with tool rotational and welding speeds of 1,000 rev/min and 150 mm/min respectively, which is 78 % of parent material tensile strength. A maximum micro hardness of 98 HV was observed at thermomechanically joint affected zone, which was welded with tool rotation of 1,000 rev/min and welding speed of 190 mm/min.


Sign in / Sign up

Export Citation Format

Share Document