Finite Element Simulation of Aluminium Foam Sandwich Panels Subjected to Impact Loading

2011 ◽  
Vol 261-263 ◽  
pp. 761-764 ◽  
Author(s):  
Roger Zou ◽  
Dong Ruan ◽  
Guo Xing Lu

One potential application of aluminium foam sandwich panels in civil engineering is the cladding system which is employed to protect other structures again impact and blast loadings. Finite element (FE) simulation of these sandwich panels subjected to impact loading was conducted by using a commercial software package, LS-DYNA (version 971). The FE model was verified by experimental results conducted previously. Good agreement was achieved between the FE and experimental results. Parametric study was conducted to investigate the effects of skin thickness, core thickness and boundary conditions on the deformation modes and energy absorption of sandwich panels with aluminum foam core.

Author(s):  
Demeng Che ◽  
Jacob Smith ◽  
Kornel F. Ehmann

The unceasing improvements of polycrystalline diamond compact (PDC) cutters have pushed the limits of tool life and cutting efficiency in the oil and gas drilling industry. However, the still limited understanding of the cutting mechanics involved in rock cutting/drilling processes leads to unsatisfactory performance in the drilling of hard/abrasive rock formations. The Finite Element Method (FEM) holds the promise to advance the in-depth understanding of the interactions between rock and cutters. This paper presents a finite element (FE) model of three-dimensional face turning of rock representing one of the most frequent testing methods in the PDC cutter industry. The pressure-dependent Drucker-Prager plastic model with a plastic damage law was utilized to describe the elastic-plastic failure behavior of rock. A newly developed face turning testbed was introduced and utilized to provide experimental results for the calibration and validation of the formulated FE model. Force responses were compared between simulations and experiments. The relationship between process parameters and force responses and the mechanics of the process were discussed and a close correlation between numerical and experimental results was shown.


2011 ◽  
Vol 148-149 ◽  
pp. 1319-1322
Author(s):  
Xiao Hu ◽  
Yi Sheng Zhang ◽  
Hong Qing Li ◽  
De Qun Li

Blow forming process of plastic sheets is simple and easy to realize, thus, it is widely used for plastic thin-wall parts. In the practical production, an effective method is needed for the preliminary set-up of process parameters in order to achieve accurate control of thickness distribution. Thus, a finite element method (FEM) code is used to simulate blow forming process. For better description of complex material theological characteristics, a physically based viscoelastic model (VUMAT forms Buckley model) to model the complex constitutive behavior is used. Nonlinear FE analyses using ABAQUS were carried out to simulate the blow forming process of plastic cups. The actual values at different locations show a satisfactory agreement with the simulation results: as a matter of fact the error along the cell mid-section did not exceed 0.02 mm on average, corresponding to 5% of the initial thickness, thus the FE model this paper can meet the requirements of the engineering practice.


2006 ◽  
Vol 326-328 ◽  
pp. 1585-1588
Author(s):  
B.J. Shi ◽  
Dong Wei Shu ◽  
J. Luo ◽  
Q.Y. Ng ◽  
J.H.T. Lau

Hard disk drives (HDD) are now the most important means of information storage, and they continue to be made smaller in size, higher in capacity, and lower in cost. The dynamic performance of an HDD has been an increasingly important consideration for its design, as we move forward toward its consumer applications. The dynamic properties of the head arm assembly (HAA) of a micro-drive were investigated using both experimental and numerical techniques. A finite element model for studying the dynamic property of the HAA was created and modified according to the experimental results. Good correlation between the experimental results and those by finite element simulation was achieved.


2011 ◽  
Vol 675-677 ◽  
pp. 921-924 ◽  
Author(s):  
Ming Wei Wang ◽  
Chun Yan Wang ◽  
Li Wen Zhang

Vacuum hot bulge forming (VHBF) is becoming an increasingly important manufacturing process for titanium alloy cylindrical workpiece in the aerospace industries. Finite element simulation is an essential tool for the specification of process parameters. In this paper, a two-dimensional nonlinear thermo-mechanical couple FE model was established. Numerical simulation of vacuum hot bulge forming of titanium alloy cylindrical workpiece was carried out using FE analysis software MSC.Marc. The effects of process parameter on vacuum hot bulge forming of BT20 titanium alloy cylindrical workpiece was analyzed by numerical simulation. The proposed an optimized vacuum hot bulge forming process parameters and die size. And the corresponding experiments were carried out. The simulated results agreed well with the experimental results.


Author(s):  
Belal Elharouney ◽  
Ayman Hussein ◽  
Ezz El-Deen Mostafa ◽  
Amr El-Nemr

The post-tensioned (PT) reinforced beams can provide a fast construction advantage through precast and cast-in-situ structural elements. However, due to the excessive increase in load capacity, especially when it comes to girder of bridges, the strengthening using Fiber-reinforced polymer (FRP) might be a solution. Near-surface mounted (NSM) is one of the methods used in strengthening cases, especially in the case of non-degraded concrete cover. Furthermore, very few researchers visited this area experimentally, which consider cost-effective. In this paper, two finite element models using the Abaqus program validated experimental results for both Post-tension beam and strengthening of the beam using NSM separately as preliminary models for combining both systems. PT reinforced concrete beam subjected to four-point bending loading as well as reinforced concrete beam strengthened with NSM using FRP bars subjected to two-point bending loading examined and validated through a 3D non-linear finite element (FE) model to be compared by the experimental results. This FE model considered the non-linear constitutive properties of concrete, yielding of steel, and the bond between strand, concrete, and FRP bars at NSM. The models were targeting the strengthening of existing Post tension girder beams of existing bridges structures. These modeling results showed a reasonable agreement with the tested beam results in terms of failure modes, the load capacity, load-deflection curve, and cracking behavior.


Sign in / Sign up

Export Citation Format

Share Document