Structural Design and Kinematics Analysis of Oblique Crossing 3DOF NC Spindle

2011 ◽  
Vol 317-319 ◽  
pp. 1908-1913
Author(s):  
Zhan Zhong Wang ◽  
Lin Zhang Cheng ◽  
Xiao Ke Fan ◽  
Yan Jun Han

Based on the study of 3R oblique non-spherical wrist and the analysis of the NC machine spindle’s function, the concept of a oblique crossing 3DOF NC spindle was offered and the 3D model of this 3DOF NC spindle was made with Solidworks software. At the same time, the kinematics model of this 3DOF NC spindle was setup with D-H parameter method and the kinematics & workspace of this 3DOF NC spindle were analyzed and simulated. Simulation results indicated that this 3DOF NC spindle, with compacted-structure, low inertness and considerable flexibility, could be in any gesture in the 3D space, and could expand the work range of the NC machine.

2012 ◽  
Vol 215-216 ◽  
pp. 258-262
Author(s):  
Quan Wei Su ◽  
Xiao Kan Wang

Simulating and analyzing the kinematics model of double crank-slider mechanism with Simulink tools of MATLAB platforms.The mechanism is a system that its kinematic equations can construct the simulation model,and its initial position may determine the relevant parameters of the model,by this way can obtain the simulation results of the kinematic parameters.Finally,take the main transmission mechanism of the the platform printing machine as an example to verify the accuracy and effectiveness of the proposed method.


2012 ◽  
Vol 619 ◽  
pp. 393-396
Author(s):  
Ying Ma

At the present situation of unbalanced proportion on aiming at the coal roadway mining, and bolting support at a slower speed. Puts forward EBZ-160 type roadheader airborne anchor design idea and principle of the rig. Establishing virtual prototype take advantage of the parametric design software of Pro/ENGINEER, and used Mechanism/Pro interface software put the 3D model import to ADAMS, to anchor rig for dynamics simulation. The simulation results said the machine structural design is reasonable, can satisfy the requirements of operation.


2017 ◽  
Vol 14 (04) ◽  
pp. 1750010 ◽  
Author(s):  
Peng Yao ◽  
Tao Li ◽  
Minzhou Luo ◽  
Qingqing Zhang ◽  
Zhiying Tan

A new torso structure for a humanoid robot has been proposed. The structural characteristics and functions of human torso have been considered to gain inspirations for design purposes. The proposed torso structure consists of six revolute units divided into two basic categories connected in a serial chain mechanism. The proposed torso structure shows more advantages compared to traditional humanoid robots in terms of high degrees of freedom (DOFs), high stiffness, self-locking capabilities, as well as easy-to-control features. Bionic optimization design based on objective function method has been implemented on structural design for better motion performances. A 3D model has been elaborated and simulated in SolidWorks and ADAMS environments for structural design and kinematic simulation purposes, respectively. Simulation results show that the new bionic torso structure is able to well imitate movements of human torso.


2014 ◽  
Vol 887-888 ◽  
pp. 1257-1260
Author(s):  
En Liu ◽  
Kai Zeng ◽  
Sheng Wan Yuan ◽  
Gang Wei Cui ◽  
Xiao Cong He ◽  
...  

In this paper, a 6-DOF riveting manipulators kinematics model was built by D-H method, and its kinematics problems were discussed. Each of the kinematics parameters was gotten by solving the direct and inverse kinematics functions in Matlab. Then the virtual prototype model of the riveting manipulator was built by ADAMS, and the position, velocity and acceleration in the end center of the riveting manipulator were gotten by the simulation analysis. The reasonability of each linkage design parameters and kinematics model could be verified by simulation results in ADAMS, a foundation could be laid for the further dynamics research.


2011 ◽  
Vol 421 ◽  
pp. 276-280 ◽  
Author(s):  
Ge Ning Xu ◽  
Hu Jun Xin ◽  
Feng Yi Lu ◽  
Ming Liang Yang

To assess the roller coaster multi-body system security, it is need to extract the running process of kinematics, dynamics, load spectrum and other features, as basis dates of the roller coaster structural design. Based on Solidworks/motion software and in the 3D model, the calculation formula of the carrying car velocity and acceleration is derived, and the five risk points of the roller coaster track section are found by simulation in the running, and the simulation results of roller coaster axle mass center velocity are compared with theoretical calculation results, which error is less than 4.1%, indicating that the calculation and simulation have a good fit and providing the evidence for the roller coaster structure design analysis.


2011 ◽  
Vol 101-102 ◽  
pp. 279-282 ◽  
Author(s):  
Jun Xie ◽  
Jun Zhang ◽  
Jie Li

Based on the characteristics and the common massage manipulations of Chinese medical massage, a practical series mechanical arm was presented to act the manipulations with the parallel executive mechanism. Forward kinematics was solved by the Denavit-Hartenberg transformation after the kinematics model of the arm was established. And the three-dimensional model of the arm was created by Pro/E and was imported into ADAMS for the kinematics analysis. The results indicated that the common massage manipulations could be simulated by the arm correctly and flexibly, and it verified the accuracy of the mechanism design of the arm.


2011 ◽  
Vol 2-3 ◽  
pp. 302-307 ◽  
Author(s):  
Tao Yu ◽  
Qing Kai Han

In the paper, a novel new gravity-constrained (GC) three-wire-driven (TWD) parallel robot is proposed. With its mechanism model, three typical kinematics analytical models, including horizontal up-down motion, pitching motion and heeling motion and their corresponding simulations are given in detail. In static analysis, the change of tensions in the wires is calculated based on previous kinematics analysis. The simulation results show the robot has good movement stability. The paper can provide useful materials to study of dynamics and control on wire-driven robot.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Ivaná Đukic ◽  
Marija Ječmenica Dučić ◽  
Nikola Nikačević ◽  
Menka Petkovska

The goal of this work was to develop a 3D model of Electric Swing Adsorption pro- cess for carbon dioxide capture from effluent gasses from power plants. Detailed 3D model of the composite honeycomb monolithic adsorber was developed for a sin- gle monolith channel and can be used to simulate and represent different physical properties: velocity, concentration and temperature. The advantage of this model is the fact that all physical properties and results can be presented visually in the 3D domain. COMSOL Multiphysics software was used for solving partial differential equations and simulations of adsorption and electrothermal desorption processes. Some simulation results are presented in this work. The results obtained from 3D simulations will be used for the adsorber model reduction to the 1D model which will be used for modeling and optimization of the whole ESA cycle due to its sim- plicity and computational demands. Simulation and optimization runs based on the 1D model will be performed in g-Proms software.


2015 ◽  
Vol 776 ◽  
pp. 319-324
Author(s):  
I. Wayan Widhiada ◽  
C.G. Indra Partha ◽  
Yuda A.P. Wayan Reza

The aim of this paper is to model and simulate kinematics motion using the differential drive model of a mobile Lego robot Mindstorm NXT. The author’s use integrated two software as a method to solve the simulation of mobile lego robot mindstorms NXT using Matlab/Simulink and Solidworks software. These softwares are enable easier 3D model creation for both simulation and hardware implementation. A fundamental of this work is the use of Matlab/Simulink Toolboxes to support the simulation and understanding of the various kinematics systems and in particular how the SimMechanics toolbox is used to interface seamlessly with ordinary Simulink block diagrams to enable the mechanical elements and its associated control system elements to be investigated in one common environment. The result of simulation shows the mobile robot movement control based on decentralized point algorithm to follow the precision x and y references that has been specified. The design of the mobile robot is validated in simulation results as proof that this design can achieve the good performance.


Author(s):  
Bowen Zhong ◽  
Liguo Chen ◽  
Zhenhua Wang ◽  
Lining Sun

This article focuses on developing a novel trans-scale precision positioning stage based on the stick-slip effect. The stick-slip effect is introduced and the rigid kinematics model of the stick-slip driving is established. The forward and return displacement equations of each step of the stick-slip driving are deduced. The relationship of return displacement and the acceleration produced by friction are obtained according to displacement equations. Combining with LuGre friction model, the flexible dynamics model of the stick-slip driving is established and simulated by using Simulink software. Simulation results show that the backward displacement will reduce with the acceleration of the slider produced by dynamic friction force, the rigid kinematics model is also verified by simulation results which are explained in further detail in the article.


Sign in / Sign up

Export Citation Format

Share Document