Modal Analysis on the Inclined Double-Column and Pre-Stress Combined Frame Structure of the 80MN Rapid Forging Hydraulic Press

2011 ◽  
Vol 317-319 ◽  
pp. 484-488
Author(s):  
Yi Gong Zhang ◽  
Hong Hong Yan ◽  
Zhi Qi Liu ◽  
Jian Li Song ◽  
Yong Tang Li

In this paper, the first 80MN rapid forging hydraulic press in China was developed. The inclined double-column and pre-stress combined frame structure and the direct Pump-driven technologies were adopted for the first time in the design of this press. The linkage driving with the full-hydraulic orbital manipulator has been realized. A rapid forging frequency of 75~80 /min and a finishing precision of ±1mm for hot-state forgings can be obtained. The three dimensional full-contact solid model of the double-column combined frame structure of the 80 MN rapid forging hydraulic press has been set up. The modal analysis of the pre-tightened frame has been carried out with the FEM analysis software ANSYS. The first five-order inherent frequencies and the corresponding natural modes have been obtained, the mode shapes of various orders have also been analyzed in detail. It is shown from the research results that the inherent frequency of the frame is larger than the impact frequency. Therefore, resonant vibration of the structure will not occur. The analysis results will have an important significance for the understanding of the dynamic performance of the rapid forging hydraulic press, optimization of the structure design of the press and the decrease of vibration and noise pollution.

2011 ◽  
Vol 105-107 ◽  
pp. 204-207
Author(s):  
Jian Dong Shang ◽  
Jun Qi Guo ◽  
Dong Fang Hu

The vibration is a high-precision machine tool components in the design of the major issues, facing its precision has a great influence, so column parts of its modal analysis is necessary. Creating three-dimensional finite element model of the column, using finite element analysis software ANSYS modal analysis of the column, which can reached the first five natural frequencies and mode shapes. Column Part of our understanding of dynamic performance and improve the machining accuracy is helpful. Modal analysis method is the dynamic performance of the column on the main approach, which mainly is to determine the vibration characteristics of the column that is the natural frequency and vibration mode, which we can determine the modes of processing accuracy, and thus the relevant parts of the machine column can be optimized so that it meet the requirements.


2014 ◽  
Vol 926-930 ◽  
pp. 3042-3045
Author(s):  
Si Cong Yuan ◽  
Xin Guo ◽  
Xiao Yu Wang ◽  
Xi Yong Pei

The three-dimensional solid models of five different length and shaft diameter anchor of bolt were constructed based on ANSYS software, and making static analysis and modal analysis on it to obtain the stress nephogram and natural frequency of bolt. Research on the stress condition of bolt in static analysis. In modal analysis, researching on the effect regular of the change of length and shaft diameter size on the bolt transverse vibration, the longitudinal and torsional vibration of three natural modes of different frequency, providing a reference for the structure design and reasonable choice of bolt type for corresponding condition.


2013 ◽  
Vol 446-447 ◽  
pp. 581-584
Author(s):  
Guang Hui Li ◽  
Xu Hong ◽  
Lin Lin Guo ◽  
Wei Bo ◽  
Guang Yu Tan

According to the structure and characteristics of the HSK-A63 tool holder, we design and retrofit the non-standard tool holder with special function module. Establish and assemble three-dimensional entity models of embedded temperature measuring tool holder, ER collet/nut and flat end mill with Pro/E 5.0. Based on the establishment of the reasonable boundary conditions and meshing of the tool holder assembly, natural frequency and vibration modes of the tool holder assembly are calculated by modal analysis with the Ansys Workbench. These analysis results are the important research basis for the dynamic characteristics designing and dynamic balance researching to the tool system.


2011 ◽  
Vol 422 ◽  
pp. 379-382
Author(s):  
Wei Chuang Quan ◽  
Mei Fa Huang ◽  
Zhi Yue Wang ◽  
Da Wei Zhang

Led die bonder used for bond lead frame and chip is one of the key equipment of led production line. The swing-arm is an important component of led die bonder and its dynamic characteristics will directly affect the piece accuracy. At present, the accuracy and efficiency of led die bonder are limited because of the vibration of the swing-arm. In solving this problem, a three-dimensional finite-element model for swing-arm is built to provide analytical frequencies and vibration modes. Then the modal distribution and vibration mode shapes for swing-arm are obtained after analyzing the modal by ansys10.0. Finally the dynamics effects of this structure by modal frequency and vibration mode are analyzed. The modal analysis of structural would provide the reference to dynamics analysis and structural optimization for swing-arm in practical use.


2010 ◽  
Vol 29-32 ◽  
pp. 310-314
Author(s):  
Zhong Cai Zheng ◽  
Na Liu ◽  
Yan Gao ◽  
Kun Jin Zhang ◽  
Hai Ou Chen

The three dimensional model of a 2-cylinder diesel engine block is established with the P ro/E software, and then the modal analysis of the engine block is carried out using finite element method with ANSYS software . Through the analysis, the inherent frequencies and mode shapes of the first 6 order modes are obtained respectively, and then are compared with the testing result; comparison shows the results of FEA estimation are in good agreement with those of testing which indicates the FEA results’ correctness. The results of the relative distribution of the vibration magnitude in the whole block are given, which provide necessary guides for the dynamic optimal design of the engine block.


2014 ◽  
Vol 599-601 ◽  
pp. 547-550
Author(s):  
Mei Ling Hao ◽  
Guang Juan Cheng

The vertical shaft impact crusher the material is accelerated , while the rotor bear complex dynamic loads , finite element method for three-dimensional modeling of the rotor body and modal analysis , discussion and analysis of results. Won the first 20 natural frequencies and mode shapes , as well as the weak link parts may exist , making the crusher prone resonance attention away from the source at work , as well as designers kinetic design provides some guidance basis.


Author(s):  
Feng Gao ◽  
Yonghua Xiong ◽  
Lei Tian ◽  
Farong Du ◽  
Guoyan Xu

The three-dimensional geometric model of the fringe-beam frame had been built based on the frame structure of a light truck. In order to optimize the frame structure, the finite element model of the frame and the suspension system were set up. Considering the influence of suspension on frame dynamic performance, the modal properties of the frame model was analyzed in the commercial analysis program ANSYS, using two different methods. Based on the experiments, it was verified that combining MPC184 elements and spring elements Combin14 is a better way to simulate suspension compared to using spring finite elements only. Furthermore, the combined simulation results coincide with experimental modal analysis results, which were conducted thereafter. Subsequently, the frame stress-strain distribution rules and dynamics response were calculated under the random road spectrum excitation, and the frame dynamic parameters were obtained. This study provides some theoretical bases for frame structure improvement, and proposes an optimum method to simulate suspension. The results have direct significance in ensuring the stability, comfort and reliability of a light truck frame.


2013 ◽  
Vol 351-352 ◽  
pp. 1244-1248
Author(s):  
Hong Yu Jia ◽  
Peng Fei Yue ◽  
Xiao Fei Wang

Space frame structure of no damage and injury finite element models were established with ANSYS, and analyze 3D curvature mode as well three-dimensional vibration mode variety rate of the space rigid frame based on modal analysis. Curvature mode and three-dimensional vibration mode variety rate as the labeled amount was selected and applied to structural damage. The calculated results showed that the first-order curvature mode not only identify against single or multiple damage location, but also determine the initial degree of injury, and the axial curvature mode is better than the horizontal curvature mode for damage identification; The calculated results also showed that the variety rate of the first-order vibration mode can identify against damage location. Methods were provided by identifying the space frame structural damage of the curvature mode or three-dimensional vibration mode variety rate.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1245-1248
Author(s):  
Zhuo Jun Zeng ◽  
Jun Ping Wang ◽  
Yan Xiang Li

This article analysis stairs effect on steel frame structure under seismic loading by using the finite element software MIDAS Gen. Detailed analyzing impact of stairs on the self-vibration period, period ratio, the story drift and other design indexes in designing of the impact under seismic loading. Analysis shows that stairs have great effects on the design index of steel frame structure. Therefore the stair effect must be considered in analysis of structure design and modeling.


2015 ◽  
Vol 667 ◽  
pp. 512-517
Author(s):  
Li Zhi Gu ◽  
Tie Ming Xiang ◽  
Peng Li ◽  
Jian Min Xu

In order to obtain the pinion's natural frequencies and mode shapes of a new kind of spiral bevel gear (SBG) which is logarithmic spiral bevel gear (LSBG) in the unconstrained state for the purpose of dynamic characteristics study, select the low carbon alloy steel 20CrMnTi (China specification) with good mechanical properties, which the carbon content is 0.17%-0.23%, the elastic modulus E=2.06675×1011Pa, the Poisson's ratio is 0.25, and the density is 7.85×103kg/m3, the finite element model of LSBG pinion which consist of 35100 nodes, 19889 Solid187 tetrahedron FEM elements is established by using free meshing method based on LSBG pinion's physical model in this paper. Solve the modal parameters of the first 6 orders, draw the main vibration mode shape according to the first 6 orders natural frequencies respectively. The first 6 orders critical revolution speeds are calculated by the first 6 orders corresponding natural frequencies, and the LSBG pinion allowable work revolution speeds are 117074.16 revolutions per minute. The free modal analysis of the conventional SBG pinion with the same parameters is done for comparison with LSBG pinion. The results show the LSBG pinion's nature frequency and the critical revolution speed are both lower than that of conventional SBG. The conclusions reflect the vibration response characteristics of LSBG pinion, and provide theoretical basis for dynamic response, structure design and optimization of LSBG pinion.


Sign in / Sign up

Export Citation Format

Share Document