Study on Property of the Fiber Made from the Mixture of Sarcandra Glabra Extracts and Rayon Cellulose

2011 ◽  
Vol 332-334 ◽  
pp. 331-334
Author(s):  
Hu Sheng Yu ◽  
De Ling Chi ◽  
Cui Cui Chen ◽  
Bin Lu Liu

Added sarcandra glabra extracts into cellulose viscose solution, make the two blends together to spin, and get functional viscose fiber with the nature antibacterial function. The test result shows that mixed sarcandra glabra extracts has no bad effect on the basic mechanical properties of the viscose fiber and the viscose fiber has the good antibacterial performance.

2016 ◽  
Vol 8 (15) ◽  
pp. 47-54
Author(s):  
Haspiadi Haspiadi

The purpose of this research is to know the influence of pressure and use of conplast against mechanical properties which are a Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) of plasterboard. The study is done because still low quality of plasterboard made from a mixture of ashes of oil-palm shell especially of the mechanical properties compared to the controls. The method of this reserach used variation of printed pressure and the addition of conplast. Test result is obtained that the highest value of Modulus of Elasticity (MOE) 90875.94 Kg/cm2, Modulus of Rupture (MOR) 61.16 Kg/cm2 and density values in generally good printed at the pressure 60 g/cm3 and the addition of conplast 25% as well as the composition of the ash of palm shell oil 40%: limestone 40%: cement 15%: fiber 5% and 300 mL of water. ABSTRAK Tujuan dari penelitian ini adalah untuk mengetahui pengaruh tekanan dan penggunaan conplast terhadap sifat mekanik yaitu kuat lentur dan keteguhan patah eternit berbahan dasar abu cangkang sawit. Penelitian ini dilakukan karena masi rendahnya mutu eternit berbahan campuran abu cangkang sawit dari bolier khususnya sifat mekanik dibandingkan dengan kontrol. Metode penelitian yang digunakan adalah dengan variasi tekanan cetak dan penambahan conplast. Hasil uji diperoleh bahwa kuat lentur tertinggi sebesar 90875,94 Kg/cm2 dan keteguhan patah sebesar 61,16 Kg/cm2, yang dicetak pada tekanan 60 g/cm3 dan penambahan conplast 25% dengan komposisi  abu cangkang sawit 40 %: kapur 40 % : semen 15 %: serat 5 % dan air 300 mL.Kata Kunci :  Abu cangkang sawit, conplast, kuat lentur, keteguhan patah.


2020 ◽  
Vol 398 ◽  
pp. 76-82 ◽  
Author(s):  
Saif M. Abbas

In this research, two groups of composite materials were used for manufacturing Above –Knee (AK) prosthetic socket. These sockets were fabricated from resin lamination (80:20) siegalharz as matrix materials, N-glass and carbon as reinforced materials using vacuum pressure. The mechanical properties for materials that used in above knee socket were tested by tensile, bending and fatigue tests. The results showed the mechanical properties of (N-glass - carbon fiber-N-glass) with matrix of lamination (80:20) resin were: Ϭy= 112Mpa, Ϭult=132MPa, Ϭb max=57Mpa, E=1.74GPa and The elongation at Beak was 3.5mm. In addition, the test result of (N-glass - carbon fiber-N-glass) with matrix of siegalharz resin were Ϭy= 123Mpa, Ϭult=151MPa, Ϭb max=174Mpa, E=2.64GPa and the elongation at Beak was3.3mm. Interface pressure was measured for above knee prosthetic socket and the patient age (30years) , height (165 cm) and weight (83 kg). High pressure values of (190Kpa) and (164Kpa) were recorded for the anterior and lateral sections respectively. This is because of the anterior and lateral muscles action which tend to be more active during the movement of the patient. The numerical results showed that the safety factor for (N-glass - carbon fiber-N-glass) with matrix lamination of (80:20) resin was found to be 0.595in addition the safety factor for (N-glass - carbon fiber-Nglass) with matrix of siegalharz resin was numerically calculated to be 1.084 which is safe in design.


2018 ◽  
Vol 773 ◽  
pp. 94-99 ◽  
Author(s):  
Venitalitya Augustia ◽  
Achmad Chafidz ◽  
Lucky Setyaningsih ◽  
Muhammad Rizal ◽  
Mujtahid Kaavessina ◽  
...  

The trend of using natural fibers as green filler in the fabrication of polymer composites is increasing. One of these natural fibers is date palm fiber (DPF). Date palm fiber is considered as agricultural waste in certain areas, such as Middle East countries. Therefore, the utilization of this fiber in the composites fabrication is an interesting topic of research. In the current study, composites were prepared by melt blending DPF with high density polyethylene (HDPE). Five different DPF loadings were studied (i.e. 0, 5, 10, 20, 30 wt%). The effect of the DPF loadings on the mechanical properties and water absorption behavior of the composites were investigated. The tensile test result showed that tensile strengths of all the composites samples were all higher than the neat HDPE with the maximum improvement was achieved at the DPF loading of 5 wt% (i.e. DFC-5), which was about 19.23 MPa (138% higher than the neat HDPE). Whereas, the flexural test result showed that the flexural strength of the composites slightly increased compared to that of the neat HDPE only until 5 wt% DPF loading (i.e. DFC-5). Afterward, the flexural strength of the DFC-10 was equal to that of the neat HDPE, and decreasing with further increase of DPF loadings. Additionally, the water absorption test result showed that the water absorption rate and uptake of water (at equilibrium) increased with the increase of DPF loading.


2011 ◽  
Vol 689 ◽  
pp. 33-38
Author(s):  
Ze Feng Liu ◽  
Qing Sen Meng ◽  
Shao Ping Chen ◽  
L.J. Liang ◽  
P.F. Xue

TiB2-TiC+Ni/TiAl/Ti graded materials were prepared by field-activated pressure-assisted synthesis process (FAPAS) and the mechanical properties and residual stress were investigated. Shear fracture that occurs at the interface between the cermets and TiAl with the maximum shear strength of 85.88 MPa. The residual stress and deformation induced by the thermal effect of chemical reaction and Joule heat during the synthesis process were analyzed by nonlinear finite element simulation. It is demonstrated that the maximum equivalent residual stress locate in the transition layer between the ceramics and TiAl, consistent with the shear test result.


Infotekmesin ◽  
2019 ◽  
Vol 9 (02) ◽  
pp. 66-71
Author(s):  
Ipung Kurniawan ◽  
Bayu Aji Girawan ◽  
Imam Yulianto

Nowdays, Alumunium is widely used and utilized in industrial activities because of light properties and having well mechanical strengths. The use of alumunium does not only limit on the use of new alumunium, but also the used one. The main purpose of this research, i.e., (1) testing of physical and mechanical properties of Al-Zn7 from the fussion of Crucible furnace; (2) analyzing crucible furnace of the Al-Zn7 fussion by comparing to the result of the first and second fussion. The method of this research was experimental research with the average value of each the first casting was 49,2 HRB and the second one was 50,3 HRB. Based on the test result showed that the quality of crucible furnace was good because it did not experience the significant changes.


2018 ◽  
Vol 24 (3) ◽  
pp. 13
Author(s):  
Mohsin N. Hamzah ◽  
Ammar S. Merza ◽  
Lamees Hussein Ali

The present work evaluated the differences in mechanical properties of two athletic prosthetic feet samples when subjected to impact while running. Two feet samples designated as design A and B were manufactured using layers of different orientations of woven glass fiber reinforced with unsaturated polyester resin as bonding epoxy. The samples’ layers were fabricated with hand lay-up method. A theoretical study was carried out to calculate the mechanical properties of the composite material used in feet manufacturing, then experimental load-deflection  test was applied at 0 degree position and 25 degree dorsiflexion feet position  and impact test were applied for both feet designs to observe the behavior of the feet under static and impact loading and compare properties like stiffness, efficiency, rigidity, and shock absorption at different drop angles range from 25 degrees to 60 degrees which perform the foot positions while running. The load-deflection test result shows that the maximum deflection of the proposed design B was 32.2 mm at 0° and 38.45mm at 25°. While it was 41mm at 0˚ and 39mm at 25˚ for design A. Impact test result shows that design B foot gives peak load of 128 .7 kg with a peak time of 0.06 sec, while design Afoot gives 125.32 kg peak load with a time of 0.069 sec.  


2013 ◽  
Vol 747 ◽  
pp. 451-454 ◽  
Author(s):  
Piyaporn Niltui ◽  
Sirichai Kanking ◽  
Savaeng Techangamvong ◽  
Ekachai Wimolmala ◽  
Narongrit Sombatsompop ◽  
...  

This work studied the antibacterial performance and mechanical properties of natural rubber (NR) compound reinforced with commercial silica at various silica loadings form 0, 20, 40 and 60 parts per hundred rubber (phr). 2-Hydroxypropyl-3-Piperazinyl-Quinoline carboxylic acid Methacrylate (HPQM) based Neusilin at loadings of 0, 3 and 5 phr were used as anti-bacterial agent against Escherichaia coli (E.coli) ATCC 25923 and Staphylococcus aureus (S.aureus) ATCC 25922. The antibacterial performance was reported as a clear zone radius by diffusion test and a percentage reduction of bacteria by Plate-Count-Agar (PCA) method. The results suggested that the increasing silica loading in the NR vulcanizates improved the tensile modulus and hardness, but decreased elongation which had optimal tensile strength at 20 phr of silica. Additionally, the HPQM based Neusilin did not affect the mechanical properties of the rubber vulcanizates. The antibacterial results showed that the inhibition zone radius and the percentage reduction increased with increasing HPQM based Neusilin, but decreased with silica filler content. The antibacterial efficacy was inversely related to the reinforcement level of the NR vulcanizates by the silica. The percentage reduction of bacteria of NR compound filled with 5 phr of HPQM based Neusilin achieved 99.9%.


2020 ◽  
pp. 073168442097519
Author(s):  
Paveena Tangudom ◽  
Ignacio Martín-Fabiani ◽  
Benjaphorn Prapagdee ◽  
Ekachai Wimolmala ◽  
Teerasak Markpin ◽  
...  

The mechanical and antibacterial properties of acrylic rubber/poly(methyl methacrylate) (AR/PMMA) blend at 10 to 50 wt% of AR content with non-treated and treated titanium dioxide (TiO2) and 2-Hydroxypropyl-3-piperazinyl-quinoline carboxylic acid methacrylate (HPQM) by N-2(aminoethyl)-3-aminopropyl trimethoxysilane were studied. The antibacterial property against Escherichia coli was evaluated. The results found that the mechanical properties of ARt-TiO2/PMMA and ARt-HPQM/PMMA blend were higher than that of the ARTiO2/PMMA and ARHPQM/PMMA blend. For antibacterial property, the ARHPQM/PMMA and ARt-HPQM/PMMA blend could act as the antibacterial material, while the ARTiO2/PMMA blend did not show. However, the ARt-TiO2/PMMA blend could inhibit bacterial cell growth with 10 to 30 wt% of AR content. The recommended compositions of ARt-TiO2/PMMA blend, which improved both mechanical and antibacterial properties, were 10 to 30 wt% of AR and were 10 to 50 wt% of AR for ARt-HPQM/PMMA. Moreover, the UV radiation increased the antibacterial properties by the destruction of the interaction in treated TiO2 and HPQM and improved the antibacterial performance of ARt-TiO2/PMMA and ARt-HPQM/PMMA blend.


2003 ◽  
Vol 87 (12) ◽  
pp. 1895-1900 ◽  
Author(s):  
Teemu Paunikallio ◽  
Jossi Kasanen ◽  
Mika Suvanto ◽  
Tuula T. Pakkanen

Sign in / Sign up

Export Citation Format

Share Document