Preparation and Thermal Decomposition of the Polyoxometalate Complexes of Ciprofloxacin with HnXW12O40 (X=B, Si, P)

2011 ◽  
Vol 335-336 ◽  
pp. 1075-1078
Author(s):  
Dun Jia Wang ◽  
Yan Fang Kang ◽  
Ben Po Xu

The polyoxometalate complexes of ciprofloxacin with HnXW12O40(X=B, Si, P) were prepared from ciprofloxacin hydrochloride and HnXW12O40·nH2O (X=B, Si, P) in aqueous solution, and characterized by elemental analysis, IR spectra and TG-DTA. The IR spectrum confirmed the presence of Keggin-type anion of heteropoly acids and the characteristic functional group of ciprofloxacin after the polyoxometalate complexes are formed. The TG/DTA curves showed that their thermal decomposition was a more-steps process consisting of simultaneous processes involving also Keggin anion. The residue of decomposition is a mixture of WO3and B2O3, SiO2or P2O5, confirmed by X-ray diffraction and IR spectroscopy. And the possible thermal decomposition mechanisms of the complexes are proposed.

1998 ◽  
Vol 23 (0) ◽  
pp. 91-98 ◽  
Author(s):  
Ana Glauce ZAINA CHIARETTO ◽  
Marco Aurélio da Silva CARVALHO FILHO ◽  
Nedja Suely FERNANDES ◽  
Massao IONASHIRO

Solid state compounds of general formula ML2.nH2O [where M is Mg, Ca, Sr or Ba; L is cinnamate (C6H5 -CH=CH-COO-) and n = 2, 4, 0.8, 3 respectively], have been synthetized. Thermogravimetry (TG), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC) and X-ray diffraction powder patterns have been used to characterize and to study the thermal stability and thermal decomposition of these compounds.


2010 ◽  
Vol 6 (1) ◽  
pp. 891-896
Author(s):  
Manel Halouani ◽  
M. Dammak ◽  
N. Audebrand ◽  
L. Ktari

One nickel 1,4-cyclohexanedicarboxylate coordination polymers, Ni2 [(O10C6H4)(COO)2].2H2O  (I), was hydrothermally synthesized from an aqueous solution of Ni (NO3)2.6H2O, (1,4-CDC) (1,4-CDC = 1,4-cyclohexanedicarboxylic acid) and tetramethylammonium nitrate. Compound (I) crystallizes in the monoclinic system with the C2/m space group. The unit cell parameters are a = 20.1160 (16) Å, b = 9.9387 (10) Å, c = 6.3672 (6) Å, β = 97.007 (3) (°), V= 1263.5 (2) (Å3) and Dx= 1.751g/cm3. The refinement converged into R= 0.036 and RW = 0.092. The structure, determined by single crystal X-ray diffraction, consists of two nickel atoms Ni (1) and Ni (2). Lots of ways of which is surrounded by six oxygen atoms, a carboxyl group and two water molecules.


Author(s):  
Ke Guo ◽  
Shaoyan Wang ◽  
Renfeng Song ◽  
Zhiqiang Zhang

AbstractLeaching titaniferous magnetite concentrate with alkali solution of high concentration under high temperature and high pressure was utilized to improve the grade of iron in iron concentrate and the grade of TiO2 in titanium tailings. The titaniferous magnetite concentrate in use contained 12.67% TiO2 and 54.01% Fe. The thermodynamics of the possible reactions and the kinetics of leaching process were analyzed. It was found that decomposing FeTiO3 with NaOH aqueous solution could be carried out spontaneously and the reaction rate was mainly controlled by internal diffusion. The effects of water usage, alkali concentration, reaction time, and temperature on the leaching procedure were inspected, and the products were characterized by X-ray diffraction, scanning electron microscope, and energy dispersive spectroscopy, respectively. After NaOH leaching and magnetic separation, the concentrate, with Fe purity of 65.98% and Fe recovery of 82.46%, and the tailings, with TiO2 purity of 32.09% and TiO2 recovery of 80.79%, were obtained, respectively.


2013 ◽  
Vol 789 ◽  
pp. 176-179 ◽  
Author(s):  
Eny Kusrini ◽  
Nofrijon Sofyan ◽  
Dwi Marta Nurjaya ◽  
Santoso Santoso ◽  
Dewi Tristantini

Hydroxyapatite/chitosan (HApC) composite has been prepared by precipitation method and used for removal of heavy metals (Cr6+, Zn2+and Cd2+) from aqueous solution. The HAp and 3H7C composite with HAp:chitosan ratio of 3:7 (wt%) were characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy-energy dispersive X-ray spectroscopy. The SEM results showed that HAp is spherical-shaped and crystalline, while chitosan has a flat structure. SEM micrograph of 3H7C composite reveals crystalline of HAp uniformly spread over the surface of chitosan. The crystal structure of HAp is maintained in 3H7C composite. Chitosan affects the adsorption capacity of HAp for heavy metal ions; it binds the metal ions as well as HAp. The kinetic data was best described by the pseudo-second order. Surface adsorption and intraparticle diffusion take place in the mechanism of adsorption process. The binding of HAp powder with chitosan made the capability of composite to removal of Cr6+, Zn2+and Cd2+from aqueous solution effective. The order of removal efficiency (Cr6+> Cd2+> Zn2+) was observed.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2457 ◽  
Author(s):  
Haifeng Zhao ◽  
Jing Lv ◽  
Junshan Sang ◽  
Li Zhu ◽  
Peng Zheng ◽  
...  

In this work, a mixing-calcination method was developed to facilely construct MXene/CuO nanocomposite. CuO and MXene were first dispersed in ethanol with sufficient mixing. After solvent evaporation, the dried mixture was calcinated under argon to produce a MXene/CuO nanocomposite. As characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and X-ray photoelectron spectra (XPS), CuO nanoparticles (60–100 nm) were uniformly distributed on the surface and edge of MXene nanosheets. Furthermore, as evaluated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), the high-temperature decomposition (HTD) temperature decrease of ammonium perchlorate (AP) upon addition of 1 wt% CuO (hybridized with 1 wt% MXene) was comparable with that of 2 wt% CuO alone, suggesting an enhanced catalytic activity of CuO on thermal decomposition of AP upon hybridization with MXene nanosheets. This strategy could be further applied to construct other MXene/transition metal oxide (MXene/TMO) composites with improved performance for various applications.


1998 ◽  
Vol 23 (0) ◽  
pp. 09-16
Author(s):  
Marco Aurélio da Silva CARVALHO FILHO ◽  
Massao IONASHIRO

Compounds of cinnamic acid with manganese, zinc and lead have been prepared in aqueous solution. Thermogravimetry, derivative thermogravimetry (TG, DTG), differential scanning calorimetry (DSC), X-ray diffraction and complexometry have been used in the characterization as well as in the study of the thermal stability and interpretation concerning the thermal decomposition.


Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1238
Author(s):  
Murendeni P. Ravele ◽  
Opeyemi A. Oyewo ◽  
Sam Ramaila ◽  
Lydia Mavuru ◽  
Damian C. Onwudiwe

In this paper, spherical-shaped pure phase djurleite (Cu31S16) and roxbyite (Cu7S4) nanoparticles were prepared by a solvothermal decomposition of copper(II) dithiocarbamate complex in dodecanthiol (DDT). The reaction temperature was used to control the phases of the samples, which were represented as Cu31S16 (120 °C), Cu31S16 (150 °C), Cu7S4 (220 °C), and Cu7S4 (250 °C) and were characterized by using X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), and absorption spectroscopy. The samples were used as photocatalysts for the degradation of tetracycline (TC) under visible light irradiation. The results of the study showed that Cu7S4 (250 °C) exhibited the best activity in the reaction system with the TC degradation rate of up to 99% within 120 min of light exposure, while the Cu31S16 (120 °C) system was only 46.5% at the same reaction condition. In general, roxbyite Cu7S4 (250 °C) could be considered as a potential catalyst for the degradation of TC in solution.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Wei Meng ◽  
Lin Du ◽  
Lin Sun ◽  
Lian Zhou ◽  
Xiaopeng Xuan ◽  
...  

One organic functional group was introduced to distinguish the four phenyl ring of tetraphenylethylene, and the In situ temperature-dependent crystal structures were determined to exhibit the conformation changes of tert-butyl...


Sign in / Sign up

Export Citation Format

Share Document