The Controllable Flexible Features of ZnO Thin Film Gas Sensor

2011 ◽  
Vol 335-336 ◽  
pp. 478-482 ◽  
Author(s):  
Xin Liang Cao

For different gas sensing, the preparation of Zinc Oxide (ZnO) thin film gas sensor has its particularity. In this paper, three kinds of preparation methods, fitting for CO and methane and CO2 sensing, are introduced. Moreover, the sensitivity is respectively analyzed as gas sensors. The reference is provided for the preparation and applications of ZnO thin film gas sensor.

RSC Advances ◽  
2016 ◽  
Vol 6 (31) ◽  
pp. 25641-25650 ◽  
Author(s):  
S. K. Shaikh ◽  
V. V. Ganbavle ◽  
S. I. Inamdar ◽  
K. Y. Rajpure

Multifunctional use of ZnO thin film as NO2 gas sensor and UV photodetector.


Chemosensors ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 225
Author(s):  
Qingting Li ◽  
Yanqiong Li ◽  
Wen Zeng

Since MXene (a two-dimensional material) was discovered in 2011, it has been favored in all aspects due to its rich surface functional groups, large specific surface area, high conductivity, large porosity, rich organic bonds, and high hydrophilicity. In this paper, the preparation of MXene is introduced first. HF etching was the first etching method for MXene; however, HF is corrosive, resulting in the development of the in situ HF method (fluoride + HCl). Due to the harmful effects of fluorine terminal on the performance of MXene, a fluorine-free preparation method was developed. The increase in interlayer spacing brought about by adding an intercalator can affect MXene’s performance. The usual preparation methods render MXene inevitably agglomerate and the resulting yields are insufficient. Many new preparation methods were researched in order to solve the problems of agglomeration and yield. Secondly, the application of MXene-based materials in gas sensors was discussed. MXene is often regarded as a flexible gas sensor, and the detection of ppb-level acetone at room temperature was observed for the first time. After the formation of composite materials, the increasing interlayer spacing and the specific surface area increased the number of active sites of gas adsorption and the gas sensitivity performance improved. Moreover, this paper discusses the gas-sensing mechanism of MXene. The gas-sensing mechanism of metallic MXene is affected by the expansion of the lamellae and will be doped with H2O and oxygen during the etching process in order to become a p-type semiconductor. A p-n heterojunction and a Schottky barrier forms due to combinations with other semiconductors; thus, the gas sensitivities of composite materials are regulated and controlled by them. Although there are only several reports on the application of MXene materials to gas sensors, MXene and its composite materials are expected to become materials that can effectively detect gases at room temperature, especially for the detection of NH3 and VOC gas. Finally, the challenges and opportunities of MXene as a gas sensor are discussed.


2014 ◽  
Vol 685 ◽  
pp. 144-148
Author(s):  
Mei Yan Qiu

ZnO is an important sensitive semiconductor gas material, it belongs to surface-controlled gas sensors, which has been developed as early as in the 60s. Compare to another two series of metal oxide gas sensing materials SnO2 and Fe2O3, ZnO is more stable. But its sensitivity is lower and its working temperature is higher, moreover, its selectivity isn’t good[1]. Therefore, the improvement of ZnO gas sensitive materials mainly focuses on raising sensitivity, improving selectivity, lowering temperature and other aspects of the work.ZnO films have a certain potential market and good industrical prospect. With the rapid deep development of the research, the application of ZnO thin film technology will continue to permeate into many kinds of areas.Including production and life. At present,these methods that have been reported such as precious metals, rare earth doped oxide composite doped, surface modification have achieved good progress[2~5].


The Analyst ◽  
2019 ◽  
Vol 144 (22) ◽  
pp. 6653-6659
Author(s):  
Fei-Hung Huang ◽  
Sz-Yun Lin ◽  
Cheng-Che Hsu

In this study, a low-cost gas-sensing device that integrates a zinc-oxide (ZnO)-based gas sensor with a microplasma generation unit is presented.


Author(s):  
Priya Gupta ◽  
Savita Maurya ◽  
Narendra Kumar Pandey ◽  
Vernica Verma

: This review paper encompasses a study of metal-oxide and their composite based gas sensors used for the detection of ammonia (NH3) gas. Metal-oxide has come into view as an encouraging choice in the gas sensor industry. This review paper focuses on the ammonia sensing principle of the metal oxides. It also includes various approaches adopted for increasing the gas sensitivity of metal-oxide sensors. Increasing the sensitivity of the ammonia gas sensor includes size effects and doping by metal or other metal oxides which will change the microstructure and morphology of the metal oxides. Different parameters that affect the performances like sensitivity, stability, and selectivity of gas sensors are discussed in this paper. Performances of the most operated metal oxides with strengths and limitations in ammonia gas sensing application are reviewed. The challenges for the development of high sensitive and selective ammonia gas sensor are also discussed.


2000 ◽  
Vol 657 ◽  
Author(s):  
Youngman Kim ◽  
Sung-Ho Choo

ABSTRACTThe mechanical properties of thin film materials are known to be different from those of bulk materials, which are generally overlooked in practice. The difference in mechanical properties can be misleading in the estimation of residual stress states in micro-gas sensors with multi-layer structures during manufacturing and in service.In this study the residual stress of each film layer in a micro-gas sensor was measured according to the five difference sets of film stacking structure used for the sensor. The Pt thin film layer was found to have the highest tensile residual stress, which may affect the reliability of the micro-gas sensor. For the Pt layer the changes in residual stress were measured as a function of processing variables and thermal cycling.


Sign in / Sign up

Export Citation Format

Share Document