Design and Finite Element Analysis of the Assemble Tooling System for Aircraft Thin-Wall Components

2011 ◽  
Vol 338 ◽  
pp. 189-192
Author(s):  
Yan Hai Chen ◽  
Xiao Guang Han ◽  
Ye Guang Yang ◽  
Yu Zhu Li

Aiming at the problems of low assembly precision and inefficient in the process of assembling thin-wall components of aircrafts , using the CATIA software to establish the 3D–model of the thin-wall components flexible tooling system. In order to improve the weak links of the system , application of the finite element software ANSYS to analysis the system, and using industrial PC to realize the controling of the whole system.

2015 ◽  
Vol 733 ◽  
pp. 591-594
Author(s):  
Yong Zhen Zhu ◽  
Kuo Yang ◽  
Qi Yang ◽  
Yun De Zhao

The CAD software was used to establish 3D model of frame of dump truck, and the finite element model was established through Hyper Mesh. The stress distributions of the frame in vertical accelerating, turning, twisting and climbing conditions were computed through finite element software when the dump truck was loaded 80t. The result is consistent with the actual situation of the frame, which proved that the approach of finite element analysis is feasible. And we proposed the improved method of the frame according to finite element results.


2018 ◽  
Vol 10 (12) ◽  
pp. 4538 ◽  
Author(s):  
Yeou-Fong Li ◽  
Habib Meda ◽  
Walter Chen

The aim of this paper was to find an optimal stiffener configuration of thin-wall tubular panels made by glass fiber reinforced polymer (GFRP) composite material, which is a low carbon emission, low life cycle cost, and sustainable material. Finite-element analysis (FEA) was used to investigate the flexural and torsional stiffness of various internally stiffened sections of thin-wall GFRP decks. These decks consist of internally stiffened tubular profiles laid side by side and bonded together with epoxy to ensure the panel acts as an assembly. Three-dimensional models of the seven proposed decks were assembled with tubular profiles of different stiffener patterns. First, the non-stiffened tube profile was tested experimentally to validate the parameters used in the subsequent numerical analysis. Then, the finite element software, ANSYS, was used to simulate the flexural and torsional behavior of the decks with different stiffener patterns under bending and torsional loads. The decks with stiffener patterns such as “O” type, “V” type, and “D” type were found to be the most effective in bending. For torsion, there was a distinct tendency for deck panels with closed shaped stiffener patterns to perform better than their counterparts. Overall, the “O” type deck panel was an optimal stiffener configuration.


2013 ◽  
Vol 300-301 ◽  
pp. 221-224
Author(s):  
Qing Rui Meng ◽  
Zhi Peng Hu ◽  
Jie Quan

First a 3D model for frictional roller of endless-rope winch was established with Pro/E software. And then the model was imported into finite element software named ANSYS Workbench, by which, the stress and deformation distribution of frictional roller could be acquired after meshing and loading. Next by making use of the Design Explorer module of ANSYS Workbench software, the paper analyzed the sensitivity of the major structure parameters which influence the roller strength. On the foundation of sensitivity analysis, these parameters were optimized to make the structure of the frictional roller more reasonable and meeting the design requirements.


2013 ◽  
Vol 281 ◽  
pp. 165-169 ◽  
Author(s):  
Xiang Lei Zhang ◽  
Bin Yao ◽  
Wen Chang Zhao ◽  
Ou Yang Kun ◽  
Bo Shi Yao

Establish the finite element model for high precision grinding machine which takes joint surface into consideration and then carrys out the static and dynamic analysis of the grinder. After the static analysis, modal analysis and harmonic response analysis, the displacement deformation, stress, natural frequency and vibration mode could be found, which also helps find the weak links out. The improvement scheme which aims to increase the stiffness and precision of the whole machine has proposed to efficiently optimize the grinder. And the first natural frequency of the optimized grinder has increased by 68.19%.


2013 ◽  
Vol 690-693 ◽  
pp. 2327-2330
Author(s):  
Ming Bo Han ◽  
Li Fei Sun

By using finite element software, the paper establishes the main stand analysis model of the Ф140 pipe rolling mill and provides the model analysis of main stand in cases of full load. Verify the design of main stand fully comply with the technical requirements .In this paper, it provides the theoretical position of split casting and welding method using electric slag welding.


2014 ◽  
Vol 898 ◽  
pp. 399-402
Author(s):  
Heng Sun ◽  
Bai Shou Li

For traditional ordinary concrete wall column prone to thermal bridges, posted outside the insulation board short life than the life of the building,in the glazed hollow bead of recycled concrete foundation with good thermal conductivity test and compressive strength of the proposed ,use glazed hollow bead of recycled concrete exterior wall column instead of the traditional ordinary concrete wall column ,and using the finite element software ANSYS simulation analysis the uniaxial compression of glazed hollow bead of recycled concrete short columns and ordinary concrete short columns. Comparative analysis showed the same intensity level glazed hollow bead of recycled concrete ultimate compressive bearing capacity of an analog value the same as ordinary concrete short columns. To validate the ANSYS simulation of concrete short columns under uniaxial compression condition .


2011 ◽  
Vol 2-3 ◽  
pp. 140-143
Author(s):  
Qing Feng Yang ◽  
Peng Wang ◽  
Yu Hong Wang ◽  
Kai Zhang

The resonance frequency of the cymbal transducer ranges from 2kHz to 40kHz and its effective electromechanical coupling factor is around 20%. Finite element analysis has been performed to ascertain how the transducer’s makeup affect the transducer’s performance parameters. Two-dimensional axisymmetric model of the cymbal transducer was founded by finite element software-ANSYS, the application of the element type was discussed and the FEM models were built up under the far field condition. Eight groups of cymbal transducers of resonance frequency around 3kHz with different structural dimensions were designed. It was better for choosing the cymbal transducer of the 8mm cavity coping diameter, 20.8mm cavity bottom diameter and 26.8mm piezoelectric ceramic wafer diameter than others for reducing distortion degree of the signal and improving communication turnover in the researched cymbal transducers. It was appropriate for choosing the cymbal transducer of the 8mm cavity coping diameter, 22.4mm cavity bottom diameter and 26.4mm piezoelectric ceramic wafer diameter in order to improve the free-field voltage sensitivity and transmission efficient.


2009 ◽  
Vol 33 (2) ◽  
pp. 175-187 ◽  
Author(s):  
Mohamed Nizar Bettaieb ◽  
Mohamed Maatar ◽  
Chafik Karra

The purpose of this work is to determine the spur gear mesh stiffness and the stress state at the level of the tooth foot. This mesh stiffness is derived from the calculation of the normal tooth displacements: local displacement where the load is applied, tooth bending displacement and body displacement [15]. The contribution of this work consists in, basing on previous works, developing optimal finite elements model in time calculation and results precision. This model permits the calculation of time varying mesh stiffness and the evaluation of stress state at the tooth foot. For these reasons a specific Fortran program was developed. It permit firstly, to obtain the gear geometric parameters (base radii, outside diameter,…) and to generate the data base of the finite element meshing of a tooth or a gear. This program is interfaced with the COSMOS/M finite element software to predict the stress and strain state and calculate the mesh stiffness of a gear system. It is noted that the mesh stiffness is periodic and its period is equal to the mesh period.


2018 ◽  
Vol 29 (16) ◽  
pp. 3188-3198 ◽  
Author(s):  
Wissem Elkhal Letaief ◽  
Aroua Fathallah ◽  
Tarek Hassine ◽  
Fehmi Gamaoun

Thanks to its greater flexibility and biocompatibility with human tissue, superelastic NiTi alloys have taken an important part in the market of orthodontic wires. However, wire fractures and superelasticity losses are notified after a few months from being fixed in the teeth. This behavior is due to the hydrogen presence in the oral cavity, which brittles the NiTi arch wire. In this article, a diffusion-mechanical coupled model is presented while considering the hydrogen influences on the NiTi superelasticity. The model is integrated in ABAQUS finite element software via a UMAT subroutine. Additionally, a finite element model of a deflected orthodontic NiTi wire within three teeth brackets is simulated in the presence of hydrogen. The numerical results demonstrate that the force applied to the tooth drops with respect to the increase in the hydrogen amount. This behavior is attributed to the expansion of the NiTi structure after absorbing hydrogen. In addition, it is shown that hydrogen induces a loss of superelasticity. Hence, it attenuates the role of the orthodontic wire on the correction tooth malposition.


Author(s):  
Hussein H. Ammar ◽  
Victor H. Mucino ◽  
Peter Ngan ◽  
Richard J. Crout ◽  
Osama M. Mukdadi

Miniscrew implants have seen increasing clinical use as orthodontic anchorage devices with demonstrated stability. The focus of this study is to develop and simulate operative factors, such as load magnitudes and anchor locations to achieve desired motions in a patient-specific 3D model undergoing orthodontic treatment with miniscrew implant anchorage. A CT scan of a patient skull was imported into Mimics software (Materialise, 12.1). Segmentation operations were performed on the images to isolate the mandible, filter out noise, then reconstruct a smooth 3D model. A model of the left canine was reconstructed with the PDL modeled as a thin solid layer. A miniscrew was modeled with dimensions based on a clinical implant (BMK OAS-T1207) then inserted into the posterior mandible. All components were volumetrically meshed and optimized in Mimics software. Elements comprising the mandible bone and teeth were assigned a material based on their gray value ranges in HU from the original scan, and meshes were exported into ANSYS software. All materials were defined as linear and isotropic. A nonlinear PDL was also defined for comparison. For transverse forces applied on the miniscrew, maximum stresses increased linearly with loading and appeared at the neck or first thread and in the cortical bone. A distal tipping force was applied on the canine, and maximum stresses appeared in the tooth at the crown and apex and in the bone at the compression surface. Under maximum loading, stresses in bone were sufficient for resorption. The nonlinear PDL exhibited lower stresses and deflections than the linear model due to increasing stiffness. Numerous stress concentrations were seen in all models. Results of this study demonstrate the potential of patient-specific 3D reconstruction from CT scans and finite-element simulation as a versatile and effective pre-operative planning tool for orthodontists.


Sign in / Sign up

Export Citation Format

Share Document