Rigid-Flexible Coupling Model and Dynamic Analysis of Rocket Sled

2011 ◽  
Vol 346 ◽  
pp. 447-454
Author(s):  
Jian Hua Zhang ◽  
Shou Shan Jiang

The Dynamics Analysis & Simulation of the Rocket Sled were done based on Multibody System Dynamics and Finite Element Analysis Theory. The most difficult work in the analysis was establishing the boundary conditions of the rocket sled. The paper made this kind of attempt. Then the relevant post processing figures and data were obtained, thereby providing the designer and manufacturer with detailed and reliable data. The conclusion is the simulation method is more effective than those before and the boundary conditions is correct and acceptable.

2011 ◽  
Vol 52-54 ◽  
pp. 261-266 ◽  
Author(s):  
Jian Hua Zhang ◽  
Shou Shan Jiang

The Dynamics Analysis & Simulation of the Rocket Sled were done based on the Multibody System Dynamics and Finite Element Analysis Theory. The most difficult work in the analysis is how to establish the boundary conditions of the rocket sled. This paper makes this kind of attempt. Then the relevant postprocessing figures and data were obtained,thereby providing the designer and manufacturer with detailed and reliable data. The conclusion is the simulation method is more effective than those before and the boundary conditions are acceptable.


2013 ◽  
Vol 765-767 ◽  
pp. 422-426 ◽  
Author(s):  
Ling Ling ◽  
Yuan Yuan Yi

Taking a planetary reducer in an electric vehicle as the object of study, a rigid-flexible coupling model was established to perform the dynamics simulation. The variational regularities of the meshing forces, output speed and acting forces of bearings were obtained, and then a finite element analysis of the planet carrier was carried out. This method can not only solve the problem of the boundary conditions of planet carrier which are difficult to define in finite element analysis, but also improve the accuracy of analysis results when the influence of carrier flexibility on the whole system is considered in dynamics simulation, which lays the foundation for further research on reducers.


2014 ◽  
Vol 971-973 ◽  
pp. 1261-1265
Author(s):  
Yu Jun Cao ◽  
Nai Hui Yu ◽  
Zheng Yang ◽  
Jian Zhong Shang

Anti-backlash gear can improve the static transmission precision of system. Besides, the dynamic characteristics of anti-backlash gear system have a significant effect on the performance of overall mechanism, and the torsion spring preload of anti-backlash gear is an important factor to affect the dynamic characteristic. In order to study dynamic characteristics of the anti-backlash gear, a rigid-flexible coupling model of single-stage anti-backlash system was established based on ADAMS / Flex, and the simulation accuracy was compared with the pure rigid model. The effect of the torsion spring preload on frequency response of the anti-backlash system was studied by virtual sweep experiments.


2013 ◽  
Vol 849 ◽  
pp. 411-416
Author(s):  
Xu Kun Ge ◽  
Da Wei Liu ◽  
Bin Tian

To obtain realistic dynamic characteristics of the lifting mechanism, the liftarm and drawbar were regarded as flexible bodies. The modal neutral file (MNF) of liftarm and drawbar were obtained from modal analysis conducted by finite element analysis (FEA) software MSC.Patran/Nastran . Then the MNF were translated into ADAMS, a rigid-flexible coupling model of the lift mechanism was built by replacing the rigid bodies with MNF. The forces of each hinge points in the rigid-flexible system, which were obtained from dynamic analysis, were compared with the rigid ones. The results showed that forces obtained from the rigid-flexible system were smaller than the rigid ones, which provided a reference for the design and improvement of the lifting mechanism.


2012 ◽  
Vol 201-202 ◽  
pp. 181-184
Author(s):  
Shi Peng Zhou ◽  
Yun Zhao ◽  
Feng Li Huang ◽  
Hua Jie Li

A rigid-flexible coupling model of sliding guideway working in powered turret for a new developed multifunction NC lathe is built up based on Solidworks, ANSYS and ADAMS. A solid model of is built up by the 3d-Modeling software Solidworks, and then the built model of sliding guideway is imported into finite element analysis software ANSYS to analyze elastic deformation. A mnf file of model generated by ANSYS which is a flexible body is fed into ADAMS to replace the rigid body of assembly. A dynamics simulation is conducted by considering a typical cutting processing like milling on lathe, the deformation of fixed guideway in working condition is checked. The analyzed results show that it is more rational and accurate to apply rigid-flexible coupling dynamic simulation for analyzing such mechanical system and this type of sliding guideway used in powered tool turret can stand up with cutting load and can meet the requirement.


2010 ◽  
Vol 44-47 ◽  
pp. 1823-1827
Author(s):  
Li Sui ◽  
Geng Chen Shi ◽  
Ping Song ◽  
Wei Song

As a device for time-delay, clock mechanism is widely used in fuze safety and arming device, whose core component is the runaway escapement. With the development of artillery systems, the dynamic environment during the projectile becomes more and more complicated. Recently, some shots misfire or premature explode during shooting process because runaway escapements’ miswork. This paper utilizes gear system’s research results applied in other fields, discusses clock mechanism’s dynamics problem, and uses ADAMS to analyze runaway escapement’s rigid-flexible coupling model. From comparing the simulation results of multi-rigid model and rigid-flexible coupling model, we find that elastic deformation will affect runaway escapement’s movement, even can cause the whole device to work abnormally.


2013 ◽  
Vol 364 ◽  
pp. 124-128
Author(s):  
Jun Wei Zhen ◽  
Ling Li Cui ◽  
Xue Chen

Rigid-flexible coupling model is the most common mechanics model for multi-body system, and discovering the law of multi-body system modeling is an important part of the study on multi-body mechanics. This paper uses finite element analysis software PATRAN to make flexibility treatment on the parts of deep groove ball bearing, combines with the virtual prototype technology and establishes the multi-flexibility body rigid-flexible coupling model which can truly reflect the dynamic characteristics of the bearing, and discusses the process and the matters needing attention for generating modal neutral file, realizes the precise modeling for fault bearing, and provides a new method for using virtual prototype to create model.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1388
Author(s):  
Daniele Oboe ◽  
Luca Colombo ◽  
Claudio Sbarufatti ◽  
Marco Giglio

The inverse Finite Element Method (iFEM) is receiving more attention for shape sensing due to its independence from the material properties and the external load. However, a proper definition of the model geometry with its boundary conditions is required, together with the acquisition of the structure’s strain field with optimized sensor networks. The iFEM model definition is not trivial in the case of complex structures, in particular, if sensors are not applied on the whole structure allowing just a partial definition of the input strain field. To overcome this issue, this research proposes a simplified iFEM model in which the geometrical complexity is reduced and boundary conditions are tuned with the superimposition of the effects to behave as the real structure. The procedure is assessed for a complex aeronautical structure, where the reference displacement field is first computed in a numerical framework with input strains coming from a direct finite element analysis, confirming the effectiveness of the iFEM based on a simplified geometry. Finally, the model is fed with experimentally acquired strain measurements and the performance of the method is assessed in presence of a high level of uncertainty.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2590
Author(s):  
Che-Yu Lin ◽  
Ke-Vin Chang

Most biomaterials and tissues are viscoelastic; thus, evaluating viscoelastic properties is important for numerous biomedical applications. Compressional viscoelastography is an ultrasound imaging technique used for measuring the viscoelastic properties of biomaterials and tissues. It analyzes the creep behavior of a material under an external mechanical compression. The aim of this study is to use finite element analysis to investigate how loading conditions (the distribution of the applied compressional pressure on the surface of the sample) and boundary conditions (the fixation method used to stabilize the sample) can affect the measurement accuracy of compressional viscoelastography. The results show that loading and boundary conditions in computational simulations of compressional viscoelastography can severely affect the measurement accuracy of the viscoelastic properties of materials. The measurement can only be accurate if the compressional pressure is exerted on the entire top surface of the sample, as well as if the bottom of the sample is fixed only along the vertical direction. These findings imply that, in an experimental validation study, the phantom design should take into account that the surface area of the pressure plate must be equal to or larger than that of the top surface of the sample, and the sample should be placed directly on the testing platform without any fixation (such as a sample container). The findings indicate that when applying compressional viscoelastography to real tissues in vivo, consideration should be given to the representative loading and boundary conditions. The findings of the present simulation study will provide a reference for experimental phantom designs regarding loading and boundary conditions, as well as guidance towards validating the experimental results of compressional viscoelastography.


Sign in / Sign up

Export Citation Format

Share Document