Improving on Assembly of SCWR Using MOX Fuel

2011 ◽  
Vol 347-353 ◽  
pp. 1633-1636 ◽  
Author(s):  
Can Hui Sun ◽  
Tao Zhou ◽  
Zhou Sen Hou ◽  
Meng Ying Liu ◽  
Feng Luo

A calculation is made for certain Supercritical Water Cooled Reactor (SCWR) using UO2 fuel and MOX fuel respectively. The results indicate that MOX fuel has a simple power distribution with UO2 fuel, but there is a larger power uneven factor when using MOX fuel, and using MOX fuel including weapon grade Pu has larger power uneven factor than using MOX fuel including reactor grade Pu. However, in the case of same power distribution, the fuel rod using MOX fuel has a higher temperature than the one using UO2 fuel. Therefore with the more uneven power distribution, the fuel in SCWR using MOX fuel has a higher temperature. This will result in a big security issue when using MOX fuel in original design of SCWR. Through analyzing the result of power distribution, an improved assembly of SCWR is presented. It can reduce the power uneven factor and increase the security of fuel rod using the improved assembly of SCWR.

Author(s):  
M. Sharabi ◽  
W. Ambrosini ◽  
N. Forgione ◽  
S. He

The present paper describes the results of the application of the FLUENT code in the analysis of rod bundle configurations proposed for high pressure supercritical water reactors. The model considers a 1/8 slice of a rod bundle. The details from CFD calculations offer predictions of the circumferential clad surface temperature and of the effect of axial power distribution on the mass exchange between subchannels and on the maximum surface rod temperature. Geometry and boundary conditions are adopted from a previous work that made use of subchannel programs, allowing for a direct comparison between the two techniques. Both the standard k-ε model and the Reynolds stress transport model are used. Conclusions are drawn about the present capabilities in predicting heat transfer behavior in fuel rod bundles proposed for supercritical water reactors.


2017 ◽  
Vol 4 (1) ◽  
Author(s):  
Zhao Chuanqi ◽  
Wang Kunpeng ◽  
Cao Liangzhi ◽  
Zheng Youqi

Burnable poison (BP) is used to control excess reactivity in supercritical water cooled reactor (SCWR). It helps reduce the number of control rods. Over all BP designs, the design in which rare-earth oxide mixes with fuel is widely used in SCWR. BP has influence on fuel assembly neutronics performance. After comparing four kinds of rare-earth oxide, Er2O3 is chosen as BP for the annular fuel assembly. The effect of different BP loading patterns on assembly power distribution is analyzed. The safety of annular fuel assembly is estimated with different BP contents. Core performance with and without BP is compared. The results had shown that the core radial power peaking factor decreased after introducing BP. It was also shown that the core axial power peaking factor increased, and the power peak moved toward the top of the core. The reason of this effect was studied. Two optimizations were given based on this study: decreasing the temperature of lower plenum and increasing the gradients of axial enrichments. By applying these optimizations, core axial power peaking factor and maximum cladding surface temperature decreased.


2012 ◽  
Vol 472-475 ◽  
pp. 278-283
Author(s):  
Juan Chen ◽  
Tao Zhou ◽  
Zhou Sen Hou ◽  
Wan Xu Cheng ◽  
Can Hui Sun

the coulped neutronics and thermo-hydraulics model for supercritical water-cooled reactor (SCWR) is developed by internal coupling method. It is based on the two group neutron diffusion equations and the one-dimensional junction thermal analysis mode, in which the cross sections used for SCWR are generated by Dragon tool. Compared with the calculation results based on the non-coupling calculation model, the steady state characteristics under coupling calculation condition are detailed analyzed by considering parameters feedback at each axial node. The results show that, as coupled model is chosen its axial power distribution would give an obvious deviation from the cosine function that used for non-coupled model. Although the cladding temperature at most of the axial nodes rises with a shifted power peak, the maximum cladding temperature is finally decreased. For the above coupling condition, the maximum cladding temperature would appear at the external assemblies with lower coolant temperature but not at inner assemblies with higher coolant temperature. As the detailed description for coupling characteristics of supercritical water-cooled reactor is given, a certain theory reference for its system safety could be provided.


Author(s):  
P. R. Swann ◽  
W. R. Duff ◽  
R. M. Fisher

Recently we have investigated the phase equilibria and antiphase domain structures of Fe-Al alloys containing from 18 to 50 at.% Al by transmission electron microscopy and Mössbauer techniques. This study has revealed that none of the published phase diagrams are correct, although the one proposed by Rimlinger agrees most closely with our results to be published separately. In this paper observations by transmission electron microscopy relating to the nucleation of disorder in Fe-24% Al will be described. Figure 1 shows the structure after heating this alloy to 776.6°C and quenching. The white areas are B2 micro-domains corresponding to regions of disorder which form at the annealing temperature and re-order during the quench. By examining specimens heated in a temperature gradient of 2°C/cm it is possible to determine the effect of temperature on the disordering reaction very precisely. It was found that disorder begins at existing antiphase domain boundaries but that at a slightly higher temperature (1°C) it also occurs by homogeneous nucleation within the domains. A small (∼ .01°C) further increase in temperature caused these micro-domains to completely fill the specimen.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 407 ◽  
Author(s):  
Mia Marchini ◽  
Alessandra Marti ◽  
Claudia Folli ◽  
Barbara Prandi ◽  
Tommaso Ganino ◽  
...  

The nutritional and physicochemical properties of sorghum proteins and starch make the use of this cereal for food production challenging. Sprouting is a cost-effective technology to improve the nutritional and functional profile of grains. Two drying treatments were used after sorghum sprouting to investigate whether the drying phase could improve the protein and starch functionalities. Results showed that the drying treatment at lower temperature/longer time (40 °C for 12 h) extended the enzymatic activity that started during sprouting compared to the one performed at higher temperature/shorter time (50 °C for 6 h). An increased protein hydrolysis and water- and oil-holding capacity were found in the flour obtained by the former treatment. Higher protein matrix hydrolysis caused high exposure of starch to enzymes, thus increasing its digestibility, while worsening the technological functionality. Overall, modulating drying conditions could represent a further way, in addition to sprouting, to improve sorghum flour’s nutritional profile.


2019 ◽  
Vol 63 (2) ◽  
pp. 328-332 ◽  
Author(s):  
Ákos Horváth ◽  
Attila R. Imre ◽  
György Jákli

The Supercritical Water Cooled Reactor (SCWR) is one of the Generation IV reactor types, which has improved safety and economics, compared to the present fleet of pressurized water reactors. For nuclear applications, most of the traditional materials used for power plants are not applicable, therefore new types of materials have to be developed. For this purpose corrosion tests were designed and performed in a supercritical pressure autoclave in order to get data for the design of an in-pile high temperature and high-pressure corrosion loop. Here, we are presenting some results, related to corrosion resistance of some potential structural and fuel cladding materials.


Holzforschung ◽  
2015 ◽  
Vol 69 (6) ◽  
pp. 751-760 ◽  
Author(s):  
Marion Huet ◽  
Anne Roubaud ◽  
Dominique Lachenal

Abstract Supercritical water gasification of weak sulfur-free black liquor (BL) was performed in a batch autoclave at temperatures between 430°C and 470°C, pressure between 24 and 27 MPa and residence time between 2 and 63 min. Results show that the gas produced was a mixture of mainly hydrogen, methane, and carbon dioxide. Maximum conversion was achieved at 470°C and 60 min. Energy recovery (ER, ratio between the energy in the gas and in the initial BL) was 46%. Thirty-four percent of the carbon and 53% of the hydrogen initially present in BL were converted into gases. Nearly 15% of initial organic carbon remains in the liquid phase and consists mainly of phenolic compounds, which are stable under those conditions. A higher temperature is needed to convert all the organic carbon. Thermodynamic equilibrium should be reached at 700°C leading to a complete conversion and a better efficiency. Sodium recovery is close to typical kraft recovery value and compatible with causticizing.


Sign in / Sign up

Export Citation Format

Share Document