To Gain the Burning Efficiency by Improving the Mixing Condition of Oil and Gas

2011 ◽  
Vol 361-363 ◽  
pp. 861-864
Author(s):  
Yen Kuei Tseng

In this research, the burner used in current industry is modified to improve the state of mixture for air and oil, so that the burning efficiency could be promoted to save fuel as well as reduce emissions of waste gas and waste heat. The way of operating this modified burner was same as the traditional one by inducing the air and oil with high pressure to the furnace, then mixing and burning the compound inside the chamber. Moreover, the construction of this modified burner was a bit different with an extra device call spoiler, which will be fixed in front end of the nozzle to create a turbulent flow for better mixing of inlet air and oil, so as to increase the burning efficiency. As the cone shape spoiler is set up onto the burner, it will seperate the inlet oil and gas inside and outside the cone , when the oil is injected from the nozzle with a high speed flow, the air inside the cone will be brought out and form a low pressure zone, in this time, if some tiny holes are punched on the wall of the cone, the inlet air outside the cone will leak inside and create a turbulent flow, which can improve the mixing condition of oil and gas and gain burning efficiency. As with the standard burner used in industrial furnaces for testing, comparing the average fuel consumption for unit hour and contrast the emissions of burner with and without installing spoiler, one can find that, the energy saving can effectively reach to 15%,while the emissions of NOxand SOxwere at the utmost reduced by 13% and 9%, respectively. The measured data of CO, CO2and waste heat expelling to environment were keeping the same, but actually they were low down when considering the total volume of inlet air diminished by 10%. The above results show that, with the spoiler attached, the burning system will have obvious benefit for energy saving and emissions reducing, and that really fit the goal of nowadays’ situation to live without energy deficit and environment impact.

2014 ◽  
Vol 962-965 ◽  
pp. 1587-1590
Author(s):  
Jing Ping Luo ◽  
Jian Feng Zhao

There is a long way to reduce emissions with the high speed of urbanization and economic growth in Beijing. In this article, depend on the IPCC country listing guidelines of greenhouse gases, carbon emissions has been calculated of Beijing beteeen1992-2011, then analysis of its historical characteristics . Beijing should seize the opportunity to research and carry out carbon recycling and energy saving technology in a planned and staged way.


2014 ◽  
Vol 602-605 ◽  
pp. 747-750
Author(s):  
Pan Zhang ◽  
Lei Chen

As a substantial power loss, the high speed automotive hydraulic power steering outputs normally exceeds the system actual demands, which is one of the practical difficulties of that kind of power steering. A new type of variable displacement of double-action vane pump based on the study of a patent is described in this issue, which could be applied in the auto steering pump. Considering of the severe energy cost in existing hydraulic power steering system, the recommended pump could compensate the rate. Based on the pump principle, the interior structure design of the pump could be improved to achieve saving energy. A rational pump structure is designed for lower energy lost according to the research on the characteristics of the variable mechanism under various speed, working conditions of the improved vane pump structure and the energy saving theory. Compared to the traditional double-action vane pump, the new vane could not only keep the advantages such as balance of radial suffer force for rotor but also change the displacement automatically according to different speeds. The transformation regulation applying on the variable mechanism floating block under different rotating speeds is analyzed derived according to the engineering dynamics principles and the dynamics model of variable framework is set up in the same way. Some MATLAB simulations are utilized to show a theoretical feasibility proof of the project.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4865
Author(s):  
Kinzo Kishida ◽  
Artur Guzik ◽  
Ken’ichi Nishiguchi ◽  
Che-Hsien Li ◽  
Daiji Azuma ◽  
...  

Distributed acoustic sensing (DAS) in optical fibers detect dynamic strains or sound waves by measuring the phase or amplitude changes of the scattered light. This contrasts with other distributed (and more conventional) methods, such as distributed temperature (DTS) or strain (DSS), which measure quasi-static physical quantities, such as intensity spectrum of the scattered light. DAS is attracting considerable attention as it complements the conventional distributed measurements. To implement DAS in commercial applications, it is necessary to ensure a sufficiently high signal-noise ratio (SNR) for scattered light detection, suppress its deterioration along the sensing fiber, achieve lower noise floor for weak signals and, moreover, perform high-speed processing within milliseconds (or sometimes even less). In this paper, we present a new, real-time DAS, realized by using the time gated digital-optical frequency domain reflectometry (TGD-OFDR) method, in which the chirp pulse is divided into overlapping bands and assembled after digital decoding. The developed prototype NBX-S4000 generates a chirp signal with a pulse duration of 2 μs and uses a frequency sweep of 100 MHz at a repeating frequency of up to 5 kHz. It allows one to detect sound waves at an 80 km fiber distance range with spatial resolution better than a theoretically calculated value of 2.8 m in real time. The developed prototype was tested in the field in various applications, from earthquake detection and submarine cable sensing to oil and gas industry applications. All obtained results confirmed effectiveness of the method and performance, surpassing, in conventional SM fiber, other commercially available interrogators.


2007 ◽  
Vol 329 ◽  
pp. 761-766 ◽  
Author(s):  
Y. Zhang ◽  
Masato Yoshioka ◽  
Shin-Ichiro Hira

At present, a commercially available magnetic barrel machine equipped with permanent magnets has some faults arising from constructional reason. That is, grinding or finishing ability is different from place to place in the machining region, resulting in the limitation on the region we can use in the container of workpieces. Therefore, in this research, authors made the new magnetic barrel machine equipped with three dimensional (3D) magnet arrangement to overcome these faults. The grinding ability of the new 3D magnetic barrel machine converted was experimentally examined, and compared with that of the traditional magnetic barrel machine. As a result, it was shown that we can use much broader region in the new 3D machine. It was also shown that the grinding ability became higher. The distribution of barrel media in action was recorded by means of a high speed video camera. It was clarified that the media rose up higher and were distributed more uniformly in the container by the effect of the magnet block newly set up. It was supposed that this must be the reason for the above-mentioned improvement of grinding ability.


Author(s):  
Yuanxin Zhou ◽  
Shaik Jeelani

In this study, a high-intensity ultrasonic liquid processor was used to obtain a homogeneous molecular mixture of epoxy resin and carbon nano fiber. The carbon nano fibers were infused into the part A of SC-15 (diglycidylether of Bisphenol A) through sonic cavitations and then mixed with part B of SC-15 (cycloaliphatic amine hardener) using a high-speed mechanical agitator. The trapped air and reaction volatiles were removed from the mixture using high vacuum. Nanophased epoxy with 2 wt.% CNF was then utilized in a vacuum assisted resin transfer molding (VARTM) set up with carbon fabric to fabricate laminated composites. The effectiveness of CNF addition on matrix dominated properties of composites has been evaluated by compression, open hole compression and inter-laminar shear. The compression strength, open hole compression strength and ILS were improved by 21%, 23% and 15%, respectively as compared to the neat composite.


2010 ◽  
Vol 426-427 ◽  
pp. 299-302
Author(s):  
Fa Ye Zang

Based on deeply analyzing the working principles and energy-saving theory of loader secondary regulating transmission system, regenerating the transmission system’s inertial energy by controlling constant torque was put forward. Considering large changes of the parameters of the transmission system and its non-linearity, a fuzzy control was adopted to control the transmission system, and the mathematical model of the system was established, then the simulations of the performance of the transmission system has been conducted. The conclusion was made that the inertial energy can be reclaimed and reused in the system by the application of the secondary regulation technology, and braking by controlling constant torque is stable, it can ensure the security of braking at high speed and also permits changing the efficiency of recovery by changing the braking torque. The system’s power has been reduced and energy saving has been achieved.


2021 ◽  
Author(s):  
Malene Hovgaard Vested ◽  
Erik Damgaard Christensen

Abstract The forces on marine and offshore structures are often affected by spilling breakers. The spilling breaker is characterized by a roller of mixed air and water with a forward speed approximately equal to the wave celerity. This high speed in the top of the wave has the potential to induce high wave loads on upper parts of the structures. This study analyzed the effect of the air content on the forces. The analyses used the Morison equation to examine the effect of the percentage of air on the forces. An experimental set-up was developed to include the injection of air into an otherwise calm water body. The air-injection did introduce a high level a turbulence. It was possible to assess the amount of air content in the water for different amounts of air-injection. In the mixture of air and water the force on an oscillating square cylinder was measured for different levels of air-content, — also in the case without air. The measurements indicated that force coefficients for clear water could be use in the Morison equation as long as the density for water was replaced by the density for the mixture of air and water.


Sign in / Sign up

Export Citation Format

Share Document