Effect of Air Fraction on Force Coefficients in Oscillatory Flow

2021 ◽  
Author(s):  
Malene Hovgaard Vested ◽  
Erik Damgaard Christensen

Abstract The forces on marine and offshore structures are often affected by spilling breakers. The spilling breaker is characterized by a roller of mixed air and water with a forward speed approximately equal to the wave celerity. This high speed in the top of the wave has the potential to induce high wave loads on upper parts of the structures. This study analyzed the effect of the air content on the forces. The analyses used the Morison equation to examine the effect of the percentage of air on the forces. An experimental set-up was developed to include the injection of air into an otherwise calm water body. The air-injection did introduce a high level a turbulence. It was possible to assess the amount of air content in the water for different amounts of air-injection. In the mixture of air and water the force on an oscillating square cylinder was measured for different levels of air-content, — also in the case without air. The measurements indicated that force coefficients for clear water could be use in the Morison equation as long as the density for water was replaced by the density for the mixture of air and water.

1985 ◽  
Vol 25 (05) ◽  
pp. 757-764
Author(s):  
Kenneth G. Nolte

Abstract A probability distribution, which incorporates the random occurrence of wave heights and the uncertainty in the force coefficients of the Morison equation, was derived for the forces on offshore structures. The random occurrence of wave heights was assumed to be described by a Weibull distribution, and the uncertainty in the force coefficients was assumed to be represented by a normal distribution. Wave force was assumed to be proportional to wave height raised to a power. The assumed distributions and force relationship may not describe exactly the actual problem within a general framework, but the assumptions are believed to be applicable to the range of wave heights and conditions occurring for the selection of static design criteria for the forces on offshore structures. The applicability of the assumptions is enhanced because the primary results are expressed as ratios, which require only relative accuracy and not quantitative accuracy. Introduction The wave forces on an offshore structure are determined by a wave theory (e.g., Stokes or stream function) that relates the water kinematics (velocity and acceleration) to the wave parameters (height and period) and a theory that relates the resulting pressures on the structure to the predicted water kinematics (e.g., the Morison equation or refraction theory). Generally, the Morison equation, which incorporates two force coefficients - the drag and inertia coefficients - is used. The wave parameters experienced by a structure during a storm are random. Also, inferred values of the force coefficients from field measurements indicate a random scatter from wave to wave caused by the random nature of the processes involved and imperfect wave and hydrodynamic theories. Therefore, the prediction of wave forces and, ultimately, the selection of design criteria for offshore structures involve both the random nature of the wave parameters (e.g., height) and the uncertainty in the force coefficients. Procedures for selecting wave heights for design criteria have received considerable attention and are well established; however, the problem of considering the uncertainty in the force coefficients has received little attention. Currently, there is no rational procedure to account generally for coefficient uncertainty except to use arbitrary, and potentially unrealistic, guidelines, such as the mean value plus a multiple of the standard deviation. The purpose of this paper is to provide a rational framework for dealing with the uncertainty in force coefficients. This framework is statistical and incorporates into the force statistics the uncertainty of the force coefficients and the random occurrence of the wave parameters. Background The wave force, Q, on an offshore structure is generally determined by the Morison equation,Equation 1 QD and QI are defined as the drag and inertia forces, respectively, per unit length acting normal to a structural element; CD and CI are the drag and inertia coefficients (i.e., the force coefficients); v and v are the water velocity and acceleration normal to the element; d is the element diameter; and ?w is the mass density of water.


2011 ◽  
Vol 42 (10) ◽  
pp. 15-21 ◽  
Author(s):  
Lingkun Chen ◽  
Lizhong Jiang ◽  
Zhiping Zeng ◽  
Weiguo Long

In this paper, the responses of high-speed railway bridge subjected to seismic load were investigated by numerical simulation. Elastic deformation will occur in the bridge system under low-level earthquake; however, the bridge system may enter a nonlinear stage under high-level earthquake. The whole finite element model of the bridge system was set up by means of ANSYS software and self-compiled moment-curvature relationship program, the elastic seismic responses of bridge system and the elastic-plastic deformation of piers considering different vehicle speeds are calculated respectively. The calculation results show that, the earthquake responses of bridge system are increase in general with the increase of vehicle speed and earthquake intensity, and the bottom of piers step into elastic-plasticity stage under high-level earthquake, the plastic hinges occurred at the pier bottom, the pier bottom step into the plastic stage, some measures such as lateral reinforced steel encryption should be taken into account to ensure safety.


2002 ◽  
Vol 21 (2) ◽  
pp. 177-189
Author(s):  
O. U. Manafa ◽  
T. S. Awolola ◽  
A. N. Isamah

A study in human Onchocerciasis was undertaken in four endemic communities in Ondo State, Nigeria. In-depth interviews were conducted on peoples' knowledge, attitudes, and practices regarding Onchocerciasis aetiology, treatment, prevention, and symptoms. These were complemented by key informant interviews and focus group discussions. Based on this information, an educational program was set up which included the training of selected villagers (motivators) and community intervention organized by these motivators. Evaluation used a control group where intervention was focused on other health problems in the area. Onchocerciasis education took place only with the intervention group. At the start of the project, peoples' knowledge about Onchocerciasis, its cause, treatment, prevention, and symptoms were varied and only a small proportion could link the bite of the blackfly to Onchocerciasis. The educational intervention achieved a high level of participant satisfaction which was expressed in continuous attendance at workshops and keeping appointments with motivators. The intervention helped to bring a significant improvement in the knowledge, attitudes, and practices (KAP) of the respondents. The knowledge of Onchocerciasis aetiology increased to 79.8 percent, 71.5 percent, and 74 percent from 48.5 percent, 48.7 percent, 34 percent, and 45 percent pre-intervention in the four study areas used. The project demonstrated that a community-based health education can be effective in Onchocerciasis control.


2021 ◽  
Vol 11 (15) ◽  
pp. 6881
Author(s):  
Calvin Chung Wai Keung ◽  
Jung In Kim ◽  
Qiao Min Ong

Virtual reality (VR) is quickly becoming the medium of choice for various architecture, engineering, and construction applications, such as design visualization, construction planning, and safety training. In particular, this technology offers an immersive experience to enhance the way architects review their design with team members. Traditionally, VR has used a desktop PC or workstation setup inside a room, yielding the risk of two users bump into each other while using multiuser VR (MUVR) applications. MUVR offers shared experiences that disrupt the conventional single-user VR setup, where multiple users can communicate and interact in the same virtual space, providing more realistic scenarios for architects in the design stage. However, this shared virtual environment introduces challenges regarding limited human locomotion and interactions, due to physical constraints of normal room spaces. This study thus presented a system framework that integrates MUVR applications into omnidirectional treadmills. The treadmills allow users an immersive walking experience in the simulated environment, without space constraints or hurt potentialities. A prototype was set up and tested in several scenarios by practitioners and students. The validated MUVR treadmill system aims to promote high-level immersion in architectural design review and collaboration.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2547
Author(s):  
Elena Garcia ◽  
Julio Torres ◽  
Nuria Rebolledo ◽  
Raul Arrabal ◽  
Javier Sanchez

Reinforced concrete may corrode in anoxic environments such as offshore structures. Under such conditions the reinforcement fails to passivate completely, irrespective of chloride content, and the corrosion taking place locally induces the growth of discrete pits. This study characterised such pits and simulated their growth from experimentally determined electrochemical parameters. Pit morphology was assessed with an optical profilometer. A finite element model was developed to simulate pit growth based on electrochemical parameters for different cathode areas. The model was able to predict long-term pit growth by deformed geometry set up. Simulations showed that pit growth-related corrosion tends to maximise as cathode area declines, which lower the pitting factor. The mechanical strength developed by the passive and prestressed rebar throughout its service life was also estimated. Passive rebar strength may drop by nearly 20% over 100 years, whilst in the presence of cracking from the base of the pit steel strength may decline by over 40%.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 315
Author(s):  
Francesco Aristodemo ◽  
Giuseppe Tripepi ◽  
Luana Gurnari ◽  
Pasquale Filianoti

We present an analysis related to the evaluation of Morison and transverse force coefficients in the case of a submerged square barrier subject to the action of solitary waves. To this purpose, two-dimensional experimental research was undertaken in the wave flume of the University of Calabria, in which a rigid square barrier was provided by a discrete battery of pressure sensors to determine the horizontal and vertical hydrodynamic forces. A total set of 18 laboratory tests was carried out by varying the motion law of a piston-type paddle. Owing to the low Keulegan–Carpenter numbers of the tests, the force regime of the physical tests was defined by the dominance of the inertia loads in the horizontal direction and of the lift loads in the vertical one. Through the use of the time series of wave forces and the undisturbed kinematics, drag, horizontal inertia, lift, and vertical inertia coefficients in the Morison and transverse semi-empirical schemes were calculated using time-domain approaches, adopting the WLS1 method for the minimization of the difference between the maximum forces and the linked phase shifts by comparing laboratory and calculated wave loads. Practical equations to calculate these coefficients as a function of the wave non-linearity were introduced. The obtained results highlighted the prevalence of the horizontal forces in comparison with the vertical ones which, however, prove to be fundamental for stability purposes of the barrier. An overall good agreement between the experimental forces and those calculated by the calibrated semi-empirical schemes was found, particularly for the positive horizontal and vertical loads. The analysis of the hydrodynamic coefficients showed a decreasing trend for the drag, horizontal inertia, and lift coefficients as a function of the wave non-linearity, while the vertical inertia coefficient underlined an initial increasing trend and a successive slight decreasing trend.


Author(s):  
Stefan Delorme ◽  
Rudolf Kaaks

Purpose For screening with low-dose CT (LDCT) to be effective, the benefits must outweigh the potential risks. In large lung cancer screening studies, a mortality reduction of approx. 20 % has been reported, which requires several organizational elements to be achieved in practice. Materials and Methods The elements to be set up are an effective invitation strategy, uniform and quality-assured assessment criteria, and computer-assisted evaluation tools resulting in a nodule management algorithm to assign each nodule the needed workup intensity. For patients with confirmed lung cancer, immediate counseling and guideline-compliant treatment in tightly integrated regional expert centers with expert skills are required. First, pulmonology contacts as well as CT facilities should be available in the participant’s neighborhood. IT infrastructure, linkage to clinical cancer registries, quality management as well as epidemiologic surveillance are also required. Results An effective organization of screening will result in an articulated structure of both widely distributed pulmonology offices as the participants’ primary contacts and CT facilities as well as central expert facilities for supervision of screening activities, individual clarification of suspicious findings, and treatment of proven cancer. Conclusion In order to ensure that the benefits of screening more than outweigh the potential harms and that it will be accepted by the public, a tightly organized structure is needed to ensure wide availability of pulmonologists as first contacts and CT facilities with expert skills and high-level equipment concentrated in central facilities. Key Points:  Citation Format


2007 ◽  
Vol 329 ◽  
pp. 761-766 ◽  
Author(s):  
Y. Zhang ◽  
Masato Yoshioka ◽  
Shin-Ichiro Hira

At present, a commercially available magnetic barrel machine equipped with permanent magnets has some faults arising from constructional reason. That is, grinding or finishing ability is different from place to place in the machining region, resulting in the limitation on the region we can use in the container of workpieces. Therefore, in this research, authors made the new magnetic barrel machine equipped with three dimensional (3D) magnet arrangement to overcome these faults. The grinding ability of the new 3D magnetic barrel machine converted was experimentally examined, and compared with that of the traditional magnetic barrel machine. As a result, it was shown that we can use much broader region in the new 3D machine. It was also shown that the grinding ability became higher. The distribution of barrel media in action was recorded by means of a high speed video camera. It was clarified that the media rose up higher and were distributed more uniformly in the container by the effect of the magnet block newly set up. It was supposed that this must be the reason for the above-mentioned improvement of grinding ability.


Author(s):  
Yuanxin Zhou ◽  
Shaik Jeelani

In this study, a high-intensity ultrasonic liquid processor was used to obtain a homogeneous molecular mixture of epoxy resin and carbon nano fiber. The carbon nano fibers were infused into the part A of SC-15 (diglycidylether of Bisphenol A) through sonic cavitations and then mixed with part B of SC-15 (cycloaliphatic amine hardener) using a high-speed mechanical agitator. The trapped air and reaction volatiles were removed from the mixture using high vacuum. Nanophased epoxy with 2 wt.% CNF was then utilized in a vacuum assisted resin transfer molding (VARTM) set up with carbon fabric to fabricate laminated composites. The effectiveness of CNF addition on matrix dominated properties of composites has been evaluated by compression, open hole compression and inter-laminar shear. The compression strength, open hole compression strength and ILS were improved by 21%, 23% and 15%, respectively as compared to the neat composite.


The selection of hospital sites is one of the most important choice a decision maker has to take so as to resist the pandemic. The decision may considerably affect the outbreak transmission in terms of efficiency , budget, etc. The main targeted objective of this study is to find the ideal location where to set up a hospital in the willaya of Oran Alg. For this reason, we have used a geographic information system coupled to the multi-criteria analysis method AHP in order to evaluate diverse criteria of physiological positioning , environmental and economical. Another objective of this study is to evaluate the advanced techniques of the automatic learning . the method of the random forest (RF) for the patterning of the hospital site selection in the willaya of Oran. The result of our study may be useful to decision makers to know the suitability of the sites as it provides a high level of confidence and consequently accelerate the power to control the COVID19 pandemic.


Sign in / Sign up

Export Citation Format

Share Document