Stability Analysis of Highway Tunnel Portal Slope in Shiyan Area

2011 ◽  
Vol 368-373 ◽  
pp. 2824-2827
Author(s):  
Sheng Li Liu ◽  
Wen Guang Zhao ◽  
Yang Zhang ◽  
He Jie Gao ◽  
Fang Wei Fu

Under the control of the tow-Yun fracture, the geological conditions are complicated and the rock strata is broken in Shiyan area ,in the northwest of Hubei province, and the rock mass is weathered into fragment. When Highway is built in this area, a lot of tunnel portal slope and landslide problems will be met. To properly solve these problems, it is needed to analyze the slope stability and to propose appropriate management measures. In the paper, taken a highway tunnel portal slope in Shiyan area for example, a detailed research was made on the mechanism of landslide formation, and using laboratory soil test results and the simple Janbu method, the local and global slope stability is calculated. The results show that the slope is stable in natural state, and in heavy rains the stability coefficient is reduced quickly and the slope will be sliding. So the slope needs to manage and the rain water needs to control.

2012 ◽  
Vol 443-444 ◽  
pp. 267-271
Author(s):  
Xu Dong Cheng ◽  
Peng Ju Qin

In this paper, the mechanical behaviors of pipe roof and bolt of shallow and unsymmetrical tunnel in soft rock are analyzed. Through the finite element software Phase2.0, combined with the geological conditions that construction site often appear, the mechanical behaviors of pipe roof and bolt and surrounding rock in the process of horseshoe highway tunnel construction in the condition that surface is soft rock and underground for the bedrock are analyzed. Research results show that: after tunnel excavation in soft rock, surrounding rock near the tunnel is easy to suffer soft-rock large deformation even failure, which needs to timely support;Due to the impact of the unsymmetrical tunnel, the mechanical behaviors of surrounding rock are unsymmetrical, such as the maximum displacement of tunnel around 0.4 m distant from apex of arch ring, the stress is asymmetrical on both sides of the tunnel arch ring etc; In addition, pipe roof can effectively prevent from the displacement of soft rock strata, improve tunnel strength factor, reduce the plastic zone of surrounding rock. This paper provides theoretical basis for the design of pipe roof and bolt.


2012 ◽  
Vol 164 ◽  
pp. 414-417
Author(s):  
Jia Ming Han

Commonly used finite element strength reduction to calculate the safety factor of slope,to analyze the stability of the slope[1~3]. Recently it also proposed the methods to evaluate the safety factor for the stability of surrounding rock of underground chambers and supporting structural mechanics[4~6]. For Qinling Mountains of the complex geological conditions in the Maanziliang highway tunnel, this article use the finite element method from the bolt resist tension, bolt length, the force of sprayed layer of concrete to computing gradeⅤsurrounding rock section of primary support safety factor, to give evaluation to support mechanics of the Maanziliang tunnel.


2014 ◽  
Vol 580-583 ◽  
pp. 1096-1099 ◽  
Author(s):  
Xiao Jun Zhou ◽  
Bo Jiang ◽  
Rui Yang ◽  
Chao Ning

This paper mainly deals with the structural design of high speed railway tunnel and its driving method in abrupt slope with loose rockmass, meanwhile summarizes the connection between tunnel portal and bridge abutment in loose rockmass according to complicated landform and geology. The anti-slide piles are adopted to retain the stability of abrupt slope near the tunnel portal. In order to eliminate the risk and cost in tunnel construction, four bench cut method is invented to satisfy the safe excavation of loose rockmass in the tunnel. Composite fiber rockbolt is also employed to keep the stability of working face while driving the tunnel. The innovative tunneling method presented in the paper can be applied to guide the rational design and economical construction of high speed railway tunnels in loose surrounding rock under harsh geological conditions.


2014 ◽  
Vol 638-640 ◽  
pp. 798-803
Author(s):  
Yong Tao Zhang

As the excavation of tunnels, there are new channels of the groundwater drainage. The original supply of the circulatory system has been destroyed. The effects of groundwater to rock mass of surrounding rock are aggravated. In this paper, combined with a new highway tunnel project, the model is built according to the design parameters and the site engineering geological conditions of the tunnel. The fluid-structure interaction module of the finite difference software FLAC3D is used for the research on tunnel excavation. The distribution of seepage field, the stability of surrounding rock and rock deformation under saturated conditions during the tunnel excavation have been analyzed. The simulation results have certain guiding meaning on fracture development, the stability design of tunnels in water-rich stratum and the design and construction of anti-drainage.


2021 ◽  
Vol 13 (7) ◽  
pp. 4046
Author(s):  
Vittoria Capobianco ◽  
Kate Robinson ◽  
Bjørn Kalsnes ◽  
Christina Ekeheien ◽  
Øyvind Høydal

Vegetation can be used as a nature-based solution (NBS) to restore rivers and mitigate water-triggered processes along streambanks. Roots are well known to improve the overall stability of slopes through hydro-mechanical reinforcement within the rooted zone. Vegetation-based solutions require the selection of species that are most suitable for specific locations, and they are aimed at restoring the natural state and function of river systems in support of biodiversity, flood management, and landscape development. Selecting a combination of different species along different zones of the riverbank can improve the conditions for the river system with regard to biodiversity and stability. Therefore, more studies are needed to investigate how the combination of a variety of different plant species can improve the stability of the riverbank. This paper presents a methodological approach for slope stability modeling including vegetation as well as the results obtained from a series of slope stability calculations adopting the proposed methodology. The analyses were carried out for critical shallow (≤3 m deep) shear planes of ideal benchmark slopes covered with four different plant combinations—(i) only grass, (ii) grass and shrubs, (iii) only trees, and (iv) trees, shrubs, and grass—for species typically found along streams in southeastern Norway. In this desk study, two types of tree species were selected, namely Norway spruce (Picea abies) and Downy birch (Betula pubescens). The Goat willow (Salix caprea) was selected as a shrub, while a common mixed-grass was chosen as grass. Vegetation features were obtained from the literature. The methodology was used for two main cases: (1) considering only the mechanical contribution of vegetation and (2) considering both the hydrological and mechanical reinforcement of vegetation. The main outcome of the numerical modeling showed that the purely mechanical contribution of vegetation to slope stability could not be decoupled from the hydrological reinforcement in order to have a realistic assessment of the roots improvement to the stability. The most critical shear surfaces occurred below the rooted zone in all cases, and the best performance was obtained using the combinations including trees. Considering the typical climate conditions in Norway, the hydro-mechanical reinforcement was most effective in the spring and for combinations including low height vegetation (i.e., grass and shrubs). The study concludes that a mixed combination of vegetation (trees, shrubs, and grass) is the most suitable for reaching the highest hydro-mechanical reinforcement of streambanks, together with erosion protection and boosting the ecosystem biodiversity. The current study can help practitioners determine which vegetation cover combination is appropriate for improving the current stability of a streambank with restoration practices.


2020 ◽  
pp. 65-75
Author(s):  
Liudmyla Skochko ◽  
Viktor Nosenko ◽  
Vasyl Pidlutskyi ◽  
Oleksandr Gavryliuk

The stability of the slope in the existing and design provisions is investigated, the constructive decisions of retaining walls on protection of the territory of construction of a residential complex in a zone of a slope are substantiated. The stability of the slope when using rational landslide structures is estimated. The results of the calculation of the slope stability for five characteristic sections on the basis of engineering-geological survey are analyzed. For each of the given sections the finite-element scheme according to the last data on change of a relief is created. The slope was formed artificially by filling the existing ravine with construction debris from the demolition of old houses and from the excavation of ditches for the first houses of the complex. Five sections along the slope are considered and its stability in the natural state and design positions is determined. Also the constructive decisions of retaining walls on protection of the territory of construction of a residential complex as along the slope there are bulk soils with various difference of heights are substantiated. This requires a separate approach to the choice of parameters of retaining walls, namely the dimensions of the piles and their mutual placement, as well as the choice of the angle of the bulk soil along the slope. The calculations were performed using numerical simulation of the stress-strain state of the system "slope soils-retaining wall" using the finite element method. An elastic-plastic model of soil deformation with a change in soil parameters (deformation module) depending on the level of stresses in the soil is adopted. Hardening soil model (HSM) used. Calculations of slope stability involve taking into account the technological sequence of erection of retaining walls and modeling of the phased development of the pit. The simulation was performed in several stages: Stage 1 - determination of stresses from the own shaft, Stage 2 - assessment of slope stability before construction, Stage 3 - installation of retaining wall piles, Stage 4 - assessment of slope stability after landslides. Based on these studies, practical recommendations were developed for the design of each section of the retaining wall in accordance with the characteristic cross-sections.


2013 ◽  
Vol 634-638 ◽  
pp. 3277-3281 ◽  
Author(s):  
Shi Guo Sun ◽  
Hong Yang ◽  
Chun Sheng Li ◽  
Bao Lin Zhang ◽  
Jia Wang ◽  
...  

The stability state of slope rock mass is relating to each other’s relative location during the transformation from open-pit to underground mining, it’s the most disadvantageous influence on the slope stability when the underground mining area is located in the toe of slope, and it’s the best influence as in the slope extracellular region. Slope stability factor changes with the geometric dimensions of underground mining increased, but not in direct proportion. Under the condition of constant geometric dimensions of mining area, the influence on slope stability is changing with the mining depth increased. Thus indicating that the influence on slope stability by underground mining has its spatial property, and to determine the specific influence value requires a combination of many factors, such as the relationship of relative spatial position, the geometric dimensions of mining area, engineering geological conditions and so on.


2019 ◽  
Vol 262 ◽  
pp. 04006
Author(s):  
Tymoteusz Zydroń ◽  
Andrzej Gruchot ◽  
Eugeniusz Zawisza

The aim of the study was to determine the geotechnical characteristics of the unburnt colliery spoils after coal-recovery from the dumping site of one of the mines of the Upper Silesian Coal Basin in Poland. Due to grain-size distribution of tested spoils their geotechnical properties were determined using medium-sized apparatuses. In order to verify the suitability of the studied spoils for the construction of hydraulic embankments, the seepage and stability calculations were conducted for models of hydraulic embankments including the effect of flood wave passage on stress conditions within the construction and their slope stability. The test results revealed, that the studied colliery spoils are characterized by favourable values of geotechnical parameters and they fulfil the requirements for soil materials used in the analysed type of constructions. The spoils are characterized by good compactibility, relatively low water permeability and average susceptibility to mechanical disintegration, which in the case of using this material for the construction of hydraulic embankments and using proper compaction technology, should reduce their susceptibility to weathering. The results of seepage and slope stability calculations for hydraulic embankments built of the studied spoils confirmed their suitability for that type of constructions, retaining the proper inclination of slopes, whereas the variant of embankment without sealing is safer from the stability viewpoint.


2012 ◽  
Vol 170-173 ◽  
pp. 1816-1819
Author(s):  
Ye Min Zhang ◽  
Wen Jian Li ◽  
Jin Cai Li

Abstract. In jiangxi red XiaShan highway tunnel interval for engineering background, the key research different scheme for tunnel construction process between them the mechanical behavior of rock and analyzed. For small interval double hole parallel tunnel between them the complex rock stress state, the finite element analysis software for using the numerical analysis method is buried deep in the condition of small interval period of bias by different construction scheme of tunnel numerical simulation. To meshshotcreting firstly method, CD method, up and down steps method, the construction method of different displacement and deformation of the stability of surrounding rock and the comparative analysis. Analyze the different schemes of before and after the surrounding rock tunnel excavation and supporting structure composed of each other of the unity displacement change rule. Put forward the tunnel between them weak rock the concept, more explicit the engineering geological conditions of weak rock tunnel clip to control surfaces. And on the basis of guidance for engineering construction, in actual construction which has obtained a better effect. The result is of a similar project design and construction to provide the reference and the model.


2012 ◽  
Vol 204-208 ◽  
pp. 2819-2823
Author(s):  
Tao Li ◽  
Kai Bin Liu ◽  
Wei Hong Yang ◽  
Bo Liu ◽  
Ying Chao Liu

The stability control of surrounding rock is a relatively important problem in tunnel boring machine (TBM) construction. The tunnel convergence deformation value was monitored in field while TBM passing weak and broken section of hydraulic tunnel. The correlation between tunnel convergence and surrounding rock stability is analyzed. The monitoring results show that: the characteristic of weak and broken Strata is closely correlated with some geological conditions, such as fault development, intrusive contact of orthophyre and lamprophyre veins. These supporting measures can well ensure the stability of surrounding rock in weak and broken section, such as sealing the inverted arch by using concrete of C25,reinforcing the inverted arch by steel arch of I10 and anchor construction in the roof. There is great difference between the properties of the weak and broken rocks on both sides, which is the main reason of the large tunnel convergence deformation. The monitoring results can provide reference for similar engineering in the future.


Sign in / Sign up

Export Citation Format

Share Document