Temperature Calculation on Phase Lead Connecting Structures of 1100MW Generator Stator Parallel Rings

2011 ◽  
Vol 383-390 ◽  
pp. 3040-3045
Author(s):  
Yan Fei Wei ◽  
Le Qi ◽  
Ting Shan Wang ◽  
Jian Ping Wang ◽  
Zhe Long Xian ◽  
...  

The temperature rise of generator components has a great impact on operation performance for large turbine generator. In this paper, applying the general FE calculation software-ANSYS, with a sequential electromagnetic-thermal field coupling calculation method, temperature calculation on phase lead connecting structures of 1100MW nuclear power turbine generator parallel rings is presented. The calculation results could offer a basic analysis to optimize the design of the generator.

2012 ◽  
Vol 433-440 ◽  
pp. 7131-7137
Author(s):  
Yan Fei Wei ◽  
Le Qi ◽  
Ting Shan Wang ◽  
Jian Ping Wang ◽  
Zhe Long Xian ◽  
...  

The temperature rise of generator components has a great impact on operation performance for large turbine generator. In this paper, applying the general FE calculation software-ANSYS, with a sequential electromagnetic-thermal field coupling calculation method, temperature calculation on phase lead connecting structures of 1100MW nuclear power turbine generator parallel rings is presented. The calculation results could offer a basic analysis to optimize the design of the generator.


2014 ◽  
Vol 63 (1) ◽  
pp. 47-61 ◽  
Author(s):  
Guang-Hou Zhou ◽  
Li Han ◽  
Zhen-Nan Fan ◽  
Yong Liao ◽  
Song Huang

Abstract To study the principle of loss and heat at the end region of large 4-poles nuclear power turbine generator, 3D transient electromagnetic field and 3D steady temperature field finite element (FE) models of the end region are established respectively. Considering the factors such as rotor motion, core non-linearity and time-varying of electromagnetic field, the anisotropic heat conductivity and different heat dissipation conditions of stator end region, a 50 Hz, 1150 MW, 4-poles nuclear power turbine generator is investigated. The loss and heat at the generator end region are calculated respectively at no-load and rated-load, and the calculation results are compared with the test data. The result shows that the calculation model is accurate and the generator design is suitable. The method is valuable for the research of loss and heat at the end region of large 4-poles nuclear power turbine generator and the improvement of the generator’s operation stability. The method has been applied successfully for the design of the larger nuclear power turbine generators


Author(s):  
Xiu-jin Wang

Shafting is one of the key units of large steam turbine generator set, its dynamic characteristics directly affect the technical level and operation effect of the new type large capacity Turbine-generator unit. The forces acting on the disc and the shaft are complex in operation. A composite rotor has various dynamic characters for a large capacity nuclear power Turbine-generator comparing with general rotor for its different structure. Numerical simulation was carried out to a composite rotor for a large capacity nuclear power T-G set, so as to analyze the influence of different length to diameter ratio on the vibration characteristics of the low pressure rotor and to study the effect of Interference Amount Between disc and shaft by using the three-dimensional finite element analysis in order to meet the requirements of the good vibration characteristics of the rotor. Firstly, the geometric model of the rotor is set up, and then the element model of the shafting is built, finally natural frequency of the rotor is calculated by using the mechanical module. Vibration characters such as the natural frequency and corresponding mode were obtained by analysis of vibration for the disc and shaft. The effect of the interference fit on critical speeds of the rotors are analyzed preliminarily. The results show that critical speeds of T-G rotor vary sensitively with magnitude of interference. (CSPE).


2013 ◽  
Vol 804 ◽  
pp. 320-324
Author(s):  
Xiang Zan Xie

This paper adopts universal finite element calculation software to carry out finite element analysis for Tianerya trench-buried inverted siphon. Researching variation law of the inverted siphons stress and displacement in construction process and operational process. The calculation results further shown design schemes rationality and safety. The analysis results provide a certain reference for design of trench-buried inverted siphon structure.


2007 ◽  
Vol 539-543 ◽  
pp. 380-385 ◽  
Author(s):  
Hiromi Nagaum ◽  
Satoru Suzuki ◽  
T. Okane ◽  
T. Umeda

The effect of Fe content on hot tearing of the high-strength Al-Mg-Si alloy was systematically investigated. In this study, a thermodynamic calculation software Thermo-Calc was used to calculate the solidification path under the non-equilibrium condition, and the mechanical properties of this alloy have also been investigated during solidification using an electromagnetic induction heating tensile machine. In order to confirm the calculation results of solidification path, a quenching test also was carried out. By using the Thermo-Calc, the sequence of crystallization, crystallization temperature of formed phases and their crystallized amount were systematically investigated for each alloy in which Fe content was changed. Furthermore, by comparing the fracture surfaces of the tensile testing sample and DC billet, the temperature range of crack initiation of the alloy was examined. Comparing the temperature range of crack initiation with the crystallization phase and its crystallization order, Fe content of high-strength Al-Mg-Si alloy influenced hot tearing significantly owing to the crystallization behavior of α(AlFeMn).


2020 ◽  
Vol 239 ◽  
pp. 19005
Author(s):  
Zhang Wenxin ◽  
Qiang shenglong ◽  
Yin qiang ◽  
Cui Xiantao

Neutron cross section data is the basis of nuclear reactor physical calculation and has a decisive influence on the accuracy of calculation results. AFA3Gassemble is widely used in nuclear power plants. CENACE is an ACE format multiple-temperature continuous energy cross section library that developed by China Nuclear Data Centre. In this paper, we calculated the AFA3G assemble by RMC.We respectively used ENDF6.8/, ENDF/7 and CENACE data for calculation. The impact of nuclear data on RMC calculation is studied by comparing the results of different nuclear data.


Sign in / Sign up

Export Citation Format

Share Document