The Influence of Amount of Wood Fiber on New Flame-Retardant Melamine-Urea-Formaldehyde (MUF) Composite Foam

2011 ◽  
Vol 393-395 ◽  
pp. 1012-1017 ◽  
Author(s):  
Yu Feng Ma ◽  
Wei Zhang ◽  
Ling Li ◽  
Ming Ming Zhang ◽  
Zeng Hui Cheng ◽  
...  

New composite foams were prepared by co-foaming of Melamine-Urea-Formaldehyde (MUF) resin and wood fiber in the closed mould at 70°C. The effects of amount of wood fiber on mechanical properties, brittleness, flame-retardant, insulation and microscopic structures of wood fiber-MUF foam were investigated. Results indicated that the flame-retardant properties increased, and the brittleness and mechanical properties decreased with the increase of the amount of wood fiber in composite foams. The addition of wood fiber resulted in more uniform cell size distribution and irregular cell shape, but had little effect on insulation properties.

2011 ◽  
Vol 250-253 ◽  
pp. 951-955 ◽  
Author(s):  
Shou Hai Li ◽  
Xiao Wei Zhuang ◽  
Yu Feng Ma ◽  
Chun Peng Wang ◽  
Fu Xiang Chu

New composite foams were prepared by using Melamine-Urea-Formaldehyde (MUF) resin and wood pulp fiber as raw materials with co-foaming method at 70°C in the opening mould. The study of the composites foam microstructure showed good adhesion between MUF matrix foam and wood pulp fiber. The flame-retardant, mechanical, anti-brittleness and insulation properties of composite foam were excellent. The results indicated that composites had superior properties enough to replace the conventional foam materials.


e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 563-573 ◽  
Author(s):  
Zeyu Xia ◽  
Zhengzhou Wang

AbstractExpanded vermiculite (EV) was introduced into rigid polyurethane (RPU) foam. The incorporation of 10 wt% EV into RPU foam increases the compressive strength and the flexural strength by 82% and by 115%, respectively compared with untreated RPU foam. The LOI of RPU foam containing 20 wt% EV is only 19.5%. To further improve the flame retardancy of RPU/EV composite foam, melamine phenylphosphate (MPP) was synthesized and introduced into the RPU/EV composite foam. The RPU/EV composite foam with 15% MPP (sample RPU/EV/MPP15) has a LOI of 27.5% and a V0 rating in the vertical UL-94 test. The PHRR and THR of sample RPU/EV/MPP15 decrease by 39% and 24%, respectively, compared with the ones of untreated RPU/EV composite foam. The compressive strength and flexural strength of RPU/EV/MPP composite foam gradually decrease with the increase in the amount of MPP. TGA results indicated that the addition of MPP further increase the residue char of the RPU/EV composite foam.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1052
Author(s):  
Buczkowska Katarzyna ◽  
Chi Hiep Le ◽  
Petr Louda ◽  
Szczypiński Michał ◽  
Totka Bakalova ◽  
...  

This paper reports the results of an experimental investigation on the mechanical properties of geopolymer foams incorporating filler from the coke dust waste (CDW). In this work, CDW was used to replace a part of geopolymer paste at 5%, 10%, 20%, and 30% by geopolymer binder mass. The physico-mechanical properties and thermal resistance against high temperatures of CDW/geopolymer foams are presented. The primary results obtained show that the use of CDW in the production of geopolymer foam composites made it possible for them to achieve relatively good mechanical properties. However, the incorporation of the CDW into the geopolymer had a slightly negative effect on thermal conductivity, but significantly improved the mechanical strength of the final product. Moreover, this waste also helped the composite foam to achieve a structure with more uniform open pores distribution, compared to the pure foam. After exposure to elevated temperatures, the residual strength of the composite foams maintained well compared to the pure foams.


2015 ◽  
Vol 30 (6) ◽  
pp. 816-826 ◽  
Author(s):  
Yiren Huang ◽  
Jianwei Yang ◽  
Zhengzhou Wang

Flame-retardant properties of ammonium polyphosphate (APP) and its two microcapsules, APP with a shell of melamine–formaldehyde (MF) resin (MFAPP) and APP with a shell of epoxy resin (EPAPP), were studied in styrene–butadiene–styrene (SBS). The results indicate that APP after the microencapsulation leads to an increase in limiting oxygen index in SBS compared with APP. When dipentaerythritol is incorporated into the SBS composites containing the APP microcapsules, a further improvement in flame retardancy of the composites is observed. The microencapsulation does not result in much improvement of mechanical properties. Moreover, the effect of a compatibilizer (SBS grafted with maleic anhydride) on flame-retardant and mechanical properties of SBS/APP composites was investigated.


2019 ◽  
Vol 2019 ◽  
pp. 1-25 ◽  
Author(s):  
Shaolin Lu ◽  
Wei Hong ◽  
Xudong Chen

Polymer materials are ubiquitous in daily life. While polymers are often convenient and helpful, their properties often obscure the fire hazards they may pose. Therefore, it is of great significance in terms of safety to study the flame retardant properties of polymers while still maintaining their optimal performance. Current literature shows that although traditional flame retardants can satisfy the requirements of polymer flame retardancy, due to increases in product requirements in industry, including requirements for durability, mechanical properties, and environmental friendliness, it is imperative to develop a new generation of flame retardants. In recent years, the preparation of modified two-dimensional nanomaterials as flame retardants has attracted wide attention in the field. Due to their unique layered structures, two-dimensional nanomaterials can generally improve the mechanical properties of polymers via uniform dispersion, and they can form effective physical barriers in a matrix to improve the thermal stability of polymers. For polymer applications in specialized fields, different two-dimensional nanomaterials have potential conductivity, high thermal conductivity, catalytic activity, and antiultraviolet abilities, which can meet the flame retardant requirements of polymers and allow their use in specific applications. In this review, the current research status of two-dimensional nanomaterials as flame retardants is discussed, as well as a mechanism of how they can be applied for reducing the flammability of polymers.


2015 ◽  
Vol 1120-1121 ◽  
pp. 519-522
Author(s):  
Xiao Wen Ren ◽  
Ya Ping Zhu ◽  
Fan Wang ◽  
Hui Min Qi

Phenolic resin modified with methylvinylcyclosilazanes (MVSZ) were prepared and their flame-retardant properties were investigated, and results exhibited that the Limited Oxygen Index (LOI) values increased with the content increasing of MVSZ, and the LOI reach to 40.8, when the content of MVSZ was 26.0%. The flame-retardant and mechanical properties of polyester fabrics reinforced phenolic resin modified with silazanes (PFMS) composites were measured, the results indicated that the LOI and flexural strength were enhanced compared with those of phenolic resins composites.


Sign in / Sign up

Export Citation Format

Share Document