Electronic Structure and Optical Properties of La or In Doped SnO2: First-Principles Calculations

2011 ◽  
Vol 393-395 ◽  
pp. 80-83
Author(s):  
Chang Peng Chen ◽  
Mei Lan Qi

Based on the density functional method, the electronic structures and the optical properties for pure and La or In doped SnO2 are comparatively investigated in detail. The calculation results indicate that both the doping of La and the doping of In induce effective reduction of the band gap of SnO2, the impurity elements form new highly localized impurity energy level at the top of the valence band near the Fermi level. The interaction between electrons changed after doping which leads to the change of electrical properties .Meanwhile, red shifts are revealed in both the imaginary part of dielectric function and the absorption spectra corresponding to the change of band gaps

2012 ◽  
Vol 430-432 ◽  
pp. 173-176 ◽  
Author(s):  
Chang Peng Chen ◽  
Jian Xiong Xie ◽  
Jia Fu Wang

Based on the density functional pseudopotential method, the electronic structures and the optical properties for Ti doped ZnS are investigated in detail. The calculation results indicate that the doping of Ti widens the band gap of ZnS and the Fermi level shifts upward into the conduction band. The impurity elements form new highly localized impurity energy level at the bottom of the conduction band near the Fermi level.,.Meanwhile, blue shifts are revealed in both the imaginary part of dielectric function and the absorption spectra corresponding to the change of band gaps.


2011 ◽  
Vol 393-395 ◽  
pp. 110-113
Author(s):  
Chang Peng Chen ◽  
Mei Lan Qi

Based on the density functional method, the electronic structures and the optical properties for Al1-xLaxN(x=0, 0.0625, 0.125, 0.1875) are comparatively investigated in detail. The calculation results indicate that La substitution of the Al sites induces effective reduction of the band gap of AlN, and the band gap being continuously reduced when increasing La doping level. With the increase of La concentration, both the imaginary part of dielectric function and the absorption spectrum show red-shift corresponding to the change of band gaps. Moreover, additional absorption peaks are observed above the absorption edge in the high-energy range which widens the absorption region.


2013 ◽  
Vol 91 (10) ◽  
pp. 801-807 ◽  
Author(s):  
Changpeng Chen ◽  
Jianxiong Xie ◽  
Shuibo Chen ◽  
Yanli Li

Based on the density functional pseudopotential method, the structural properties, the band structure, the density of states, and the optical properties of pure and Zr-doped La2O3 were calculated. The calculation results indicate that the defect of La (Zr) exists steadily with a certain solubility. Zr substitution of the La sites induces effective reduction of the band gap of La2O3, the band gap being continuously reduced when increasing Zr doping level. The Fermi energy level shifts to the conduction band and exhibits metal-like characteristic after the Zr atom is introduced. The calculated optical properties indicate that red shifts are revealed in both the imaginary part of the dielectric function and the absorption spectra corresponding to the change of band gaps. Moreover, additional absorption is observed in the visible region, which implies that Zr-doped La2O3 might be a potential candidate for photoelectrical application. The calculation results are consistent with experimental results that have been reported.


2013 ◽  
Vol 749 ◽  
pp. 551-555 ◽  
Author(s):  
Lei Li ◽  
Wen Xue Li ◽  
Dong Han ◽  
She Wei Xin ◽  
Yi Yang ◽  
...  

First principles calculation for optical properties of a tetragonal BC3 (t-BC3) are performed through the pseudopotential density functional method. The exchange correlation potential is treated by the Perdew-Burke-Eruzerhof form of generalized gradient approximation. The basic optical constants including the real and imaginary parts of the dielectric function, the optical absorption coefficient, the reflectivity and the energy loss function were calculate in detail by this method. The results indicate that the t-BC3 is an optical anisotropic crystal and its electron-deficiency characteristic can cause some features in low energy region.


2016 ◽  
Vol 30 (10) ◽  
pp. 1650060 ◽  
Author(s):  
Haifeng Shi ◽  
Changping Zhou ◽  
Chengliang Zhang ◽  
Enjia Ye

In this paper, the electronic structures and optical properties of N-doped, S-doped and N/S-codoped InNbO4 were systematically investigated by first-principles calculations based on density functional theory (DFT). As for N-doped InNbO4, the acceptor N-[Formula: see text] states would introduce on the upper edge of the valence band (O-[Formula: see text]). While S-[Formula: see text] states would mix with O-[Formula: see text] states when O atom was replaced by S atom in InNbO4. As for N/S-codoped InNbO4, N-[Formula: see text] states mixed with S-[Formula: see text] states above the valence band, resulting in the energy bandgap further narrower in contrast to those of the individual N(S)-doped InNbO4. The optical absorption edge of N/S-codoped InNbO4 displayed an obvious redshift and was successfully extended to visible light region due to the synergistic effect of N/S co-doping. This research proposed that N/S co-doping was a promising method to improve the photocatalytic properties of InNbO4.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 424
Author(s):  
Cuihua Zhao ◽  
Baishi Li ◽  
Xi Zhou ◽  
Jianhua Chen ◽  
Hongqun Tang

The electronic structures and optical properties of pure, Ag-doped and S-doped α-Fe2O3 were studied using density functional theory (DFT). The calculation results show that the structure of α-Fe2O3 crystal changes after Ag and S doping, which leads to the different points of the high symmetry of Ag-doped and S-doped α-Fe2O3 with that of pure α-Fe2O3 in the energy band, as well as different Brillouin paths. In addition, the band gap of α-Fe2O3 becomes smaller after Ag and S doping, and the optical absorption peak shifts slightly toward the short wavelength, with the increased peak strength of S/α-Fe2O3 and the decreased peak strength of Ag/α-Fe2O3. However, the optical absorption in the visible range is enhanced after Ag and S doping compared with that of pure α-Fe2O3 when the wavelength is greater than 380 nm, and the optical absorption of S-doped α-Fe2O3 is stronger than that of Ag-doped α-Fe2O3.


2017 ◽  
Vol 19 (5) ◽  
pp. 3679-3687 ◽  
Author(s):  
Tao Yang ◽  
Masahiro Ehara

Using density functional theory calculations, we discussed the geometric and electronic structures and nucleation of small Co clusters on γ-Al2O3(100) and γ-Al2O3(110) surfaces.


2018 ◽  
Vol 6 (11) ◽  
pp. 2830-2839 ◽  
Author(s):  
Gul Rehman ◽  
S. A. Khan ◽  
B. Amin ◽  
Iftikhar Ahmad ◽  
Li-Yong Gan ◽  
...  

Based on (hybrid) first-principles calculations, material properties (structural, electronic, vibrational, optical, and photocatalytic) of van der Waals heterostructures and their corresponding monolayers (transition metal dichalcogenides and MXenes) are investigated.


2020 ◽  
Vol 34 (25) ◽  
pp. 2050214 ◽  
Author(s):  
Chang Liu ◽  
Enling Li ◽  
Tuo Peng ◽  
Kaifei Bai ◽  
Yanpeng Zheng ◽  
...  

In this paper, electronic and optical properties of GaN/InN core/shell nanowires (CSNWs) have been theoretically investigated through the first principles calculations. The binding energy of In and N atoms on surface of six crystal planes along the [Formula: see text]-axis of GaN nanowires are all negative, which indicate that In and N atoms can be effectively deposited on the surface of GaN nanowires and preparing GaN/InN CSNWs is feasible theoretically. Calculation results of electronic properties indicate that the core/shell ratio and diameter of GaN/InN CSNWs have significant effect on the band structure, bandgap can be effectively adjusted when keeping the number of GaN layers unchanged and changing the number of InN layers. Moreover, with the increase in the number of InN layers, the absorption spectrum of GaN/InN CSNW has significant redshift and few weak absorption peaks appear in the visible light region.


2013 ◽  
Vol 373-375 ◽  
pp. 1965-1969
Author(s):  
Kun Nan Qin ◽  
Ling Zhi Zhao ◽  
Yong Mei Liu ◽  
Fang Fang Li ◽  
Chao Yang Cui

The electronic structure and optical properties of Cu-doped SnS2with Sn-substituted content of 0, 12.5 and 37.5 at.% were successfully calculated by the first principles plane-wave pseudopotentials based on the density functional theory. It is found that the intermediate belts appear near the Fermi level and the energy band gap becomes narrower after the doping of the Cu atoms. The absorption peaks show a remarkable redshift and the absorption region broadens relatively after introducing acceptor impurity level. When Sn atoms of 37.5 at% were substituted by Cu, the optical absorption coefficient is significantly improved in the frequency range below 5.58 eV and over 8.13 eV.


Sign in / Sign up

Export Citation Format

Share Document