Preparation of RHA-Paraffin Phase Change Materials

2011 ◽  
Vol 399-401 ◽  
pp. 1156-1159
Author(s):  
Jun Wang ◽  
Bao Guo Ma ◽  
Jian Liang Zhang ◽  
Wen Yang

In this paper, a kind of RHA-paraffin phase change material was prepared, and the SEM was used for observing its internal morphologies, DSC analysis was carried out for detecting its temperature and enthalpy of phase transition. The results showed that rice husk ash have a greater absorption rate for paraffin; a large number of pores of the RHA were filled by paraffin in the RHA-paraffin phase change material, and the absorption rate can reach 53.5%.

2014 ◽  
Vol 599 ◽  
pp. 355-360 ◽  
Author(s):  
Bin Bin Leng ◽  
Mei Zhu Chen ◽  
Shao Ping Zheng ◽  
Shao Peng Wu

With the global warming, phase change materials are being expected to be applied in asphalt pavement to help lower its surface temperature. In this study, a kind of composite phase change material was prepared and its technique parameters were optimized through theoretical analysis and experimental study. A solid-liquid phase change material, with melt point of 43°C and phase transition heat of 161.6J/g, was used as core. The organophilic montmorillonite (OMMT) was used as a carrier and can prevent leakage of the melted phase change materials. The results showed that the ratio of OMMT to lauric acid was 2.6:1, and the melting temperature and time were 74°Cand 1.5hours, respectively. The composite phase change material prepared in this study had the phase transition latent heat of 36.168J/g and the transition temperature of 40.094°C. And the experimental results are in good agreement with theoretical analysis.


Author(s):  
Ali Deriszadeh ◽  
Filippo de Monte ◽  
Marco Villani

Abstract This study investigates the cooling performance of a passive cooling system for electric motor cooling applications. The metal-based phase change materials are used for cooling the motor and preventing its temperature rise. As compared to oil-based phase change materials, these materials have a higher melting point and thermal conductivity. The flow field and transient heat conduction are simulated using the finite volume method. The accuracy of numerical values obtained from the simulation of the phase change materials is validated. The sensitivity of the numerical results to the number of computational elements and time step value is assessed. The main goal of adopting the phase change material based passive cooling system is to maintain the operational motor temperature in the allowed range for applications with high and repetitive peak power demands such as electric vehicles by using phase change materials in cooling channels twisted around the motor. Moreover, this study investigates the effect of the phase change material container arrangement on the cooling performance of the under study cooling system.


2021 ◽  
Vol 7 (1) ◽  
pp. 1
Author(s):  
Tejashree Amberkar ◽  
Prakash Mahanwar

Phenol-formaldehyde shelled phase change material microcapsules (MPCMs) were fabricated and their processing parameters were analyzed with the Taguchi method. Core to shell ratio, surfactant concentration and speed of mixing are the parameters that were optimized in five levels. The optimized values for the surfactant concentration, core to shell ratio and agitation speed were 3%, 1:1 and 800 rpm, respectively. The obtained microcapsules were spherical in shape. The melting enthalpy of the MPCMs synthesized with optimized processing parameters was 148.93 J/g in 35–62 °C. The obtained temperature range of phase transition temperature can be used for storing different food articles such as chocolate and hot served foods.


2021 ◽  
Vol 16 (1) ◽  
pp. 032-041
Author(s):  
Pradeep N ◽  
Somesh Subramanian S

Thermal energy storage through phase change material has been used for wide applications in the field of air conditioning and refrigeration. The specific use of this thermal storage has been for energy storage during low demand and release of this energy during peak loads with potential to provide energy savings due to this. The principle of latent heat storage using phase change materials (PCMs) can be incorporated into a thermal storage system suitable for using deep freezers. The evaporator is covered with another box which has storage capacity or passage through phase change material. The results revealed that the performance is increased from 3.2 to 3.5 by using PCM.


RSC Advances ◽  
2014 ◽  
Vol 4 (74) ◽  
pp. 39552-39557 ◽  
Author(s):  
Zhonghao Rao ◽  
Xinyu You ◽  
Yutao Huo ◽  
Xinjian Liu

The nano-encapsulated phase change materials (PCM), which have several good thermophysical properties, were proposed as potential for thermal energy storage.


2013 ◽  
Vol 683 ◽  
pp. 106-109
Author(s):  
Xiao Gang Zhao ◽  
Ying Pan

Phase change materials, abbreviated as PCM, due to the excellent heat storage performance, have been used as building materials and got more and more attention in recent years. The article introduce the building application of phase change material, and discuss its contribution to the building energy saving.


2020 ◽  
Vol 170 ◽  
pp. 01007
Author(s):  
Marwa El Yassi ◽  
Ikram El Abbassi ◽  
Alexandre Pierre ◽  
Yannick Melinge

Nowadays, buildings sector contributes to climate change by consuming a considerable amount of energy to afford thermal comfort for occupants. Passive cooling techniques are a promising solution to increase the thermal inertia of building envelopes, and reduce temperature fluctuations. The phase change materials, known as PCM, can be efficiently employed to this purpose, because of their high energy storage density. Among the various existing solutions, the present study is dedicated to solid-liquid phase change materials. Temperature evolution (according to their defined temperature range) induces the chemical change of the material and its state. For building applications, the chemical transition can be accomplished from liquid to solid (solidification) and from solid to liquid (melting). In fact, this paper presents a comparative thermal analysis of several test rooms with and without phase change materials embedded in a composite wallboard in different climates. The used PCM consist in a flexible sheet of 5 mm thickness (Energain, manufactured by the company DuPont de Nemours). The main properties of such a commercial solution have been delivered by the manufacturer and from analyses. The room model was validated using laboratory instrumentations and measurements of a test room in four cities: Lyon; Reading and Casablanca. Results indicate that this phase change material board can absorb heat gains and also reduce the indoor air temperature fluctuations during daytime. The aim of the study is to show the benefits of this layer with phase change material and compare it in different climatic zones.


Sign in / Sign up

Export Citation Format

Share Document