Effect of Phosphating Technologies on Corrosion Resistance of Phosphate Coatings on 6063 Aluminum Alloy

2011 ◽  
Vol 399-401 ◽  
pp. 2079-2082
Author(s):  
Bi Lan Lin ◽  
Yu Ye Xu ◽  
Biao Tian

The basic formulation and technologies of phosphating for 6063 aluminum alloys were discussed to enhance the corrosion resistance. The effect of phosphating time, pH, ZnO, H3PO4 and NaF content on corrosion resistance was investigated using Tafel polarization methods. The results show that the optimum phosphating technologies of 6063 aluminum alloys are as follows: 7 g/L ZnO, 20 mL/L 85% H3PO4, 1.2 g/L NaF, pH 3.0, temperature 45±2°C, phosphating time 7 min. After phosphating treatment the anodic and cathodic corrosion processes of 6063 alloys are suppressed greatly, and the corrosion resistance is enhanced.

Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 605 ◽  
Author(s):  
Chang-Hsien Hsu

As industrial manufacturing technologies continuously improve, many conventional industrial materials are struggling to meet the needs of today’s industries. Aluminum alloys are currently the most extensively used non-ferrous metal in the industry, whose properties include corrosion resistance, high strength, and high ductility. As a result, they are widely used in many products, such as doors and windows, vehicles, and electronics. Pure aluminum though, is a very soft, silver-white metal, so to increase its strength, aluminum alloy manufacturers add in various chemical elements (such as magnesium, silicon, and zinc) according to international standards, and then adjust the proportions based on customer needs. If the chemical element composition does not meet specification requirements, it will affect the quality of the aluminum alloy product or even delay delivery and subsequently impact the operational performance of the manufacturer. To ensure and increase aluminum alloy quality, this study used a combined Six Sigma quality index (SSQI), Qpc, to develop a multi-characteristic quality analysis model (MCQAM) with five steps for the aluminum alloy industry. A practical example with a manufacturer specializing in producing 6063 aluminum alloys in Taiwan is given to demonstrate the effectiveness and feasibility of this proposed approach. The result shows that the proposed method not only effectively improves the quality of 6063 aluminum alloy, but also enhances its performance and capability (that is, corrosion resistance increases by 17%, strength increases by 8%, and stiffness increases by 3%). Finally, future works are also discussed in this context.


Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 4
Author(s):  
Dmitry V. Dzhurinskiy ◽  
Stanislav S. Dautov ◽  
Petr G. Shornikov ◽  
Iskander Sh. Akhatov

In the present investigation, the plasma electrolytic oxidation (PEO) process was employed to form aluminum oxide coating layers to enhance corrosion resistance properties of high-strength aluminum alloys. The formed protective coating layers were examined by means of scanning electron microscopy (SEM) and characterized by several electrochemical techniques, including open circuit potential (OCP), linear potentiodynamic polarization (LP) and electrochemical impedance spectroscopy (EIS). The results were reported in comparison with the bare 6061-O aluminum alloy to determine the corrosion performance of the coated 6061-O alloy. The PEO-treated aluminum alloy showed substantially higher corrosion resistance in comparison with the untreated substrate material. A relationship was found between the coating formation stage, process parameters and the thickness of the oxide-formed layers, which has a measurable influence on enhancing corrosion resistance properties. This study demonstrates promising results of utilizing PEO process to enhance corrosion resistance properties of high-strength aluminum alloys and could be recommended as a method used in industrial applications.


2020 ◽  
Vol 67 (5) ◽  
pp. 437-444
Author(s):  
Di Xie ◽  
Hui Chen ◽  
Siyi Yin ◽  
Feisen Wang ◽  
Jingwen Chen ◽  
...  

Purpose Laser cleaning, as a new type of cleaning technology, has the advantages of environment-friendliness, better selectivity, better controllability and higher efficiency compared to traditional chemical cleaning or grinding. This paper aims to use ultra-fast surface laser cleaning equipment built in laboratory to study the influence of different energy density (7.6, 11.5 and 15.3 J/cm2) on corrosion resistance of the aluminum alloy A7N01P-T4, a high-speed train body material. Design/methodology/approach SEM, white light interferometer, EDS and XPS were used to analyze the surface morphology, roughness, element content and oxide layer composition of aluminum alloy before and after cleaning. The corrosion resistance was studied by electrochemical experiments and exfoliation corrosion experiments. Findings The results showed that new oxide scale was formed on the surface after laser cleaning. The changes of surface roughness and chemical composition of oxide scale made a significant influence on corrosion behaviors. Better corrosion resistance was obtained with the energy density increased, and at the energy density of 11.5 J/cm2, aluminum alloy exhibited the best corrosion resistance. Research limitations/implications The paper only studies specific aluminum alloys and is not universal. Laser cleaning equipment is set up for the laboratory and has not yet been put into industrial production. Practical implications This paper indicated that ultra-fast laser processing was a new direction for the development of industrial equipment surface cleaning and carried out ultra-fast laser of aluminum alloy surface cleaning had certain research significance for its corrosion resistance. Social implications Compared with the conventional cleaning methods such as air abrasives grinding or chemical cleaning, laser cleaning has advantages of environment-friendliness, better selectivity, better controllability and higher efficiency. Laser cleaning can not only protect the environment, but also improve cleaning efficiency. Originality/value Changes in the surface of aluminum alloys after ultra-fast surface laser treatment were found, and the mechanism of changes in aluminum alloy corrosion properties was clarified.


Alloy Digest ◽  
1989 ◽  
Vol 38 (5) ◽  

Abstract IncoMAP alloy Al-9052 is a high-strength, corrosion resistant aluminum alloy made by the mechanical alloying process. It is dispersion strengthened by oxides and carbides. Its density is 5% less than age hardenable aluminum alloys of comparable strength. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-296. Producer or source: Inco Alloys International Inc..


2007 ◽  
Vol 561-565 ◽  
pp. 127-130
Author(s):  
M. Hara ◽  
K. Matsuda ◽  
T. Iwai ◽  
M. Kihara ◽  
W. Yamauchi ◽  
...  

A new surface treatment technology for the aluminum alloys that exhibits not only high corrosion and weather resistance but also good mirror luster has been developed. By performing electrolytic permeation, the improved corrosion resistance and weather resistance while maintaining a high mirror luster was achieved for an aluminum alloy A2014-T6. The high strength aluminum alloys featuring high corrosion and weather resistance have been available for industrial products. Then the claim number of the products by A2014 T6 aluminum alloy has been reduced sharply to almost zero level in comparison with a past. A few applications and the development of the processing in industrial scale in A2014 T6 aluminum alloy will be presented.


2016 ◽  
Vol 880 ◽  
pp. 119-123
Author(s):  
Deepa Prabhu ◽  
Padmalatha

The corrosion inhibition of Garciniaindica extract (GIE) on 6063 aluminum alloy was investigated in 0.5 M sodium hydroxide (NaOH) solution by weight loss method and Tafel polarization techniques. The effects of inhibitor concentrations, temperature on the inhibitor action were investigated. Inhibition efficiency was found to increase with increase in concentration of inhibitor and it increased with increase in the temperature. The kinetic parameters and thermodynamic parameters were calculated. The adsorption of GIE was found to be through chemisorption and obeyed Langmuir adsorption isotherm.


2016 ◽  
Vol 710 ◽  
pp. 41-46 ◽  
Author(s):  
Aline F.S. Bugarin ◽  
Fernanda Martins Queiroz ◽  
Maysa Terada ◽  
Hercílio G. De Melo ◽  
Isolda Costa

2XXX and 7XXX high strength aluminum alloys are the most used materials for structural parts of aircrafts due to their high strength/weight ratio. Their joining procedure is an engineering challenge since they present low weldability. Friction Stir Welding (FSW) is a joining technology developed in the early 90 ́s. It is a solid-state welding process, without the use of fillers or gas shield, that eliminates conventional welding defects and has been considered of great interest for application in the aircraft industry. FSW of aluminum alloys results in four regions of different microstructures, specifically: the base material (BM), the heat affected zone (HAZ), the thermo-mechanically affected zone (TMAZ), and the nugget zone (NZ). The complex microstructure of the weld region leads to higher susceptibility to localized corrosion as compared to the BM even when similar alloys are joined. The welding of dissimilar alloys in its turn results in even more complex microstructures as materials with intrinsically different composition, microstructures and electrochemical properties are put in close contact. Despite the great interest in FSW, up to now, only few corrosion studies have been carried out for characterization of the corrosion resistance of dissimilar Al alloys welded by FSW. The aim of this study is to investigate the corrosion behavior of aluminum alloy 2024-T3 (AA2024-T3) welded to aluminum alloy 7475-T761 (AA7475-T761) by FSW. The evaluation was performed in 0.01 mol.L-1 by means of open circuit potential measurements, polarization techniques and surface observation after corrosion tests.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 159 ◽  
Author(s):  
Xiaojuan Dong ◽  
Jianbing Meng ◽  
Yizhong Hu ◽  
Xiuting Wei ◽  
Xiaosheng Luan ◽  
...  

Aluminum alloys are widely used, but they are prone to contamination or damage under harsh working environments. In this paper, a self-cleaning superhydrophobic aluminum alloy surface with good corrosion resistance was successfully fabricated via the combination of sand peening and electrochemical oxidation, and it was subsequently covered with a fluoroalkylsilane (FAS) film. The surface morphology, surface wettability, and corrosion resistance were investigated using a scanning electron microscope (SEM), an optical contact angle measurement, and an electrochemical workstation. The results show that binary rough structures and an FAS film with a low surface energy on the Al alloy surfaces confer good superhydrophobicity with a water contact angle of 167.5 ± 1.1° and a sliding angle of 2.5 ± 0.7°. Meanwhile, the potentiodynamic polarization curve shows that the corrosion potential has a positively shifted trend, and the corrosion current density decreases by three orders of magnitude compared with that of the original aluminum alloy sample. In addition, the chemical stability of the as-prepared superhydrophobic surface was evaluated by dripping test using solutions with different pH values for different immersion time. It indicates that the superhydrophobic surface could provide long-term corrosion protection for aluminum alloys. Consequently, the as-prepared superhydrophobic surface has excellent contamination resistance and self-cleaning efficacy, which are important for practical applications.


Sign in / Sign up

Export Citation Format

Share Document