Enhancing Agent Intelligence with Behavior Duplication

2011 ◽  
Vol 403-408 ◽  
pp. 1266-1269 ◽  
Author(s):  
Wei Tang ◽  
Jun Lai

The traditional agent intelligence designing always lead to a fixed behavior manner. In this way, the NPC(Non-Player Character) in the game will act in a fixed and expectable way. It has greatly weakened the long-term attraction of single-played game. Extracting the human action patterns using a statistical-based machine learning algorithm can provide an easily-understanding way to implement the agent behavior intelligence. A daemon program records and sample the human player’s input action and related properties of character and virtual environment, and then apply certain statistical-based machine learning algorithm on the sample data. As a result, a human-similar intelligent behavior model was obtained. It can be used to help agent making an action decision. Repeating the learning process can give the agent a variety of intelligent behavior.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Hanlin Liu ◽  
Linqiang Yang ◽  
Linchao Li

A variety of climate factors influence the precision of the long-term Global Navigation Satellite System (GNSS) monitoring data. To precisely analyze the effect of different climate factors on long-term GNSS monitoring records, this study combines the extended seven-parameter Helmert transformation and a machine learning algorithm named Extreme Gradient boosting (XGboost) to establish a hybrid model. We established a local-scale reference frame called stable Puerto Rico and Virgin Islands reference frame of 2019 (PRVI19) using ten continuously operating long-term GNSS sites located in the rigid portion of the Puerto Rico and Virgin Islands (PRVI) microplate. The stability of PRVI19 is approximately 0.4 mm/year and 0.5 mm/year in the horizontal and vertical directions, respectively. The stable reference frame PRVI19 can avoid the risk of bias due to long-term plate motions when studying localized ground deformation. Furthermore, we applied the XGBoost algorithm to the postprocessed long-term GNSS records and daily climate data to train the model. We quantitatively evaluated the importance of various daily climate factors on the GNSS time series. The results show that wind is the most influential factor with a unit-less index of 0.013. Notably, we used the model with climate and GNSS records to predict the GNSS-derived displacements. The results show that the predicted displacements have a slightly lower root mean square error compared to the fitted results using spline method (prediction: 0.22 versus fitted: 0.31). It indicates that the proposed model considering the climate records has the appropriate predict results for long-term GNSS monitoring.


2020 ◽  
Vol 36 (2) ◽  
pp. 297-303
Author(s):  
Koichi Furui ◽  
Itsuro Morishima ◽  
Yasuhiro Morita ◽  
Yasunori Kanzaki ◽  
Kensuke Takagi ◽  
...  

Author(s):  
Murugan Krishnamoorthy ◽  
Bazeer Ahamed B. ◽  
Sailakshmi Suresh ◽  
Solaiappan Alagappan

Construction of a neural network is the cardinal step to any machine learning algorithm. It requires profound knowledge for the developer in assigning the weights and biases to construct it. And the construction should be done for multiple epochs to obtain an optimal neural network. This makes it cumbersome for an inexperienced machine learning aspirant to develop it with ease. So, an automated neural network construction would be of great use and provide the developer with incredible speed to program and run the machine learning algorithm. This is a crucial assist from the developer's perspective. The developer can now focus only on the logical portion of the algorithm and hence increase productivity. The use of Enas algorithm aids in performing the automated transfer learning to construct the complete neural network from the given sample data. This algorithm proliferates on the incoming data. Hence, it is very important to inculcate it with the existing machine learning algorithms.


2021 ◽  
Vol 50 (4) ◽  
pp. 686-705
Author(s):  
B. Uma Maheswari ◽  
R. Sonia ◽  
M. P Raja Kumar ◽  
J. Ramya

Recognition of human actions is a trending research topic as it can be used for crucial medical applications like life care and healthcare. In this research, we propose a novel machine learning algorithm for the classification of human actions based on sparse representation theory. In the proposed framework, the input videos are initially partitioned into several temporal segments of a predefined length. From these temporal segments, the key-cuboids are then obtained. These cuboids are obtained based on the locations having maximum variation in orientation. From these regions, key-cuboids are extracted. From the key-cuboids, Histogram of Oriented Gradient (HOG) features are extracted. This new descriptor has the capability to express the dynamic features in the action videos. Using these features, a single shared dictionary is created from the videos belonging to different classes using K-Singular Value Decomposition (K-SVD) algorithm. This dictionary has the combined features of all the action classes. This shared dictionary is generated during the training phase. During the testing phase, the features belonging to a test class is classified using a novel Sparse Representation Modeling based Action Recognition (SRMAR) Algorithm using Orthogonal Matching Pursuit (OMP) and the shared dictionary. The proposed framework was evaluated using popular benchmark action recognition datasets like KTH dataset, Olympic dataset and the Hollywood dataset. The results obtained using these datasets were represented in the form of a confusion matrix. Evaluation was performed using metrics like overall classification accuracy, specificity, precision, recall and F-score that were obtained from the confusion matrix. This system achieved a high specificity of about 99.52%, 99.16% and 96.15% for the KTH dataset, Olympic dataset and the Hollywood datasets, respectively. Similarly, the proposed framework attained very good precision of 97.64%, 90.46% and 73.39% for the KTH dataset, Olympic dataset and the Hollywood datasets, respectively. Also, the average value of recall achieved was 97.58%, 90.86% and 74.09% for the KTH dataset, Olympic dataset and the Hollywood datasets, respectively. It was also observed that the proposed machine learning algorithm achieved outstanding results compared to the existing state-of-the-art human action recognition frameworks in the literature.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 4070 ◽  
Author(s):  
Xijun Ye ◽  
Xueshuai Chen ◽  
Yaxiong Lei ◽  
Jiangchao Fan ◽  
Liu Mei

Deflection is one of the key indexes for the safety evaluation of bridge structures. In reality, due to the changing operational and environmental conditions, the deflection signals measured by structural health monitoring systems are greatly affected. These ambient changes in the system often cover subtle changes in the vibration signals caused by damage to the system. The deflection signals of prestressed concrete (PC) bridges are regarded as the superposition of different effects, including concrete shrinkage, creep, prestress loss, material deterioration, temperature effects, and live load effects. According to multiscale analysis theory of the long-term deflection signal, in this paper, an integrated machine learning algorithm that combines a Butterworth filter, ensemble empirical mode decomposition (EEMD), principle component analysis (PCA), and fast independent component analysis (FastICA) is proposed for separating the individual deflection components from a measured single channel deflection signal. The proposed algorithm consists of four stages: (1) the live load effect, which is a high-frequency signal, is separated from the raw signal by a Butterworth filter; (2) the EEMD algorithm is used to extract the intrinsic mode function (IMF) components; (3) these IMFs are utilized as input in the PCA model and some uncorrelated and dominant basis components are extracted; and (4) FastICA is applied to derive the independent deflection component. The simulated results show that each individual deflection component can be successfully separated when the noise level is under 10%. Verified by a practical application, the algorithm is feasible for extracting the structural deflection (including concrete shrinkage, creep, and prestress loss) only caused by structural damage or material deterioration.


2018 ◽  
Author(s):  
C.H.B. van Niftrik ◽  
F. van der Wouden ◽  
V. Staartjes ◽  
J. Fierstra ◽  
M. Stienen ◽  
...  

Author(s):  
Kunal Parikh ◽  
Tanvi Makadia ◽  
Harshil Patel

Dengue is unquestionably one of the biggest health concerns in India and for many other developing countries. Unfortunately, many people have lost their lives because of it. Every year, approximately 390 million dengue infections occur around the world among which 500,000 people are seriously infected and 25,000 people have died annually. Many factors could cause dengue such as temperature, humidity, precipitation, inadequate public health, and many others. In this paper, we are proposing a method to perform predictive analytics on dengue’s dataset using KNN: a machine-learning algorithm. This analysis would help in the prediction of future cases and we could save the lives of many.


Sign in / Sign up

Export Citation Format

Share Document