The Comprehensive Test for Geothermal Tail-Water Disposal

2011 ◽  
Vol 403-408 ◽  
pp. 4522-4527
Author(s):  
Zong Jun Gao ◽  
Jia Guo Ren ◽  
Jia Liang Li ◽  
Hong Cao ◽  
Qian Qian Wu ◽  
...  

Geothermal reservoirs and groundwater resources in layered porous media in large sedimentary basins have enormous exploitation potential because of their extensive distribution, great quantity, and feasible temperatures and drilling depths. The discharge of geothermal wastewater (i.e. tail-water) on the surface is a serious environmental issue because of its high salinity content, so the Bureau of Geology Exploration and Mineral Resources Exploitation in Shandong Province, China called for the study of the disposal technique of the geothermal tail-water. The disposal test process is as follows: take the waste of geothermal water to make physics-chemistry preparative disposal; filtration with manganese-sand set and/or double-medium equipment; filtration with ion exchange resins; nanofiltration membrane separation; and reverse osmosis separation. After separation, the cheap, clean water can be used as a material for chemical plants. However, in the case of deeply embedded geothermal groundwater resources, connate water(buried water), or bad recharge conditions, must be dried up for a long time exploitation, causing ground depression. Therefore, it is concluded that systems utilizing reinjection, i.e. closed-circuit cycle mode injection, in sandstone reservoirs are ideal for the realization of sustainable exploitation of the geothermal groundwater resources with favorable environmental conditions on the surface.

Author(s):  
Yuliia Dzihora ◽  
Hennadiy Stolyarenko

With the beginning of Anthropocene epoch, nature is facing a lot of environmental problems that drastically increased in the last century. On the current rate of resource consumption, soon nature will lose the ability for self-restoration. In order to avoid inevitable consequences of resources exploitation, new approaches should be developed in all areas of human life. Linear economy concepts that were utilized for a long time and were based on use and disposal of each separate resource depending on the purpose is not sufficient anymore. More holistic approach should be applied to overcome the challenges that we are facing now. Application of circular economy concepts for wastewater treatment facilities has a great potential to enhance sustainability of water management. This paper will focus on circular economy concepts applied for modern pilot installation that combines biological treatment and membrane separation and discusses the potential for the full-scale implementation. Since, pilot plant was operated without any chemicals addition it eases the use of the waste sludge that is received as a by-product for different purposes as agricultural application and biogas production.


Author(s):  
Jesper Kresten Nielsen ◽  
Nils-Martin Hanken

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Kresten Nielsen, J., & Hanken, N.-M. (2002). Late Permian carbonate concretions in the marine siliciclastic sediments of the Ravnefjeld Formation, East Greenland. Geology of Greenland Survey Bulletin, 191, 126-132. https://doi.org/10.34194/ggub.v191.5140 _______________ This investigation of carbonate concretions from the Late Permian Ravnefjeld Formation in East Greenland forms part of the multi-disciplinary research project Resources of the sedimentary basins of North and East Greenland (TUPOLAR; Stemmerik et al. 1996, 1999). The TUPOLAR project focuses on investigations and evaluation of potential hydrocarbon and mineral resources of the Upper Permian – Mesozoic sedimentary basins. In this context, the Upper Permian Ravnefjeld Formation occupies a pivotal position because it contains local mineralisations and has source rock potential for hydrocarbons adjacent to potential carbonate reservoir rocks of the partly time-equivalent Wegener Halvø Formation (Harpøth et al. 1986; Surlyk et al. 1986; Stemmerik et al. 1998; Pedersen & Stendal 2000). A better understanding of the sedimentary facies and diagenesis of the Ravnefjeld Formation is therefore crucial for an evaluation of the economic potential of East Greenland.


1990 ◽  
Vol 148 ◽  
pp. 21-24
Author(s):  
L Stemmerik ◽  
T.C.R Pulvertaft ◽  
H.C Larsen

GGU has two principal functions in the field of hydrocarbon geology: (1) to identify and investigate sedimentary basins with hydrocarbon potential, in order to obtain information that can attract and guide industry in its choice of target areas for exploration, and (2) on the basis of the insight gained from (1), to advise the Mineral Resources Administration for Greenland in technical matters concerning the administration of licences and concessions.


2020 ◽  
Author(s):  
I. Tonguç Uysal ◽  
Claudio Delle Piane ◽  
Andrew Todd ◽  
Horst Zwingmann

Abstract. Australian terranes concealed beneath Mesozoic cover record complex Precambrian tectonic histories involving a successive development of several Proterozoic to Paleozoic orogenic systems. This study presents an integrated approach combining K–Ar, 40Ar–39Ar, and Rb–Sr geochronology of Precambrian authigenic illites from the recently discovered Millungera Basin in north-central Australia. Brittle deformation and repeated fault activity are evident from the sampled cores and their microstructures, probably associated with the large-scale faults inferred from interpretations of seismic survey. Rb–Sr isochron, 40Ar–39Ar total gas, and K–Ar ages are largely consistent indicating late Mesoproterozoic and early Proterozoic episodes (~ 1115 ± 26 Ma, ~ 1070 ± 25 Ma, ~ 1040 ± 24 Ma, ~ 1000 ± 23 Ma, and ~ 905 ± 21 Ma) of active tectonics in north-central Australia. K–Ar results show that illites from fault gouges and authigenic matrix illites in undeformed adjacent sandstones precipitated contemporaneously, indicating that advection of tectonically mobilised fluids extended into the undeformed wall rocks above or below the fracture and shear (fault gouge) zones. This study provides insight into the enigmatic time-space distribution of Precambrian tectonic zones in central Australia, which are responsible for the formation of a number of sedimentary basins with significant energy and mineral resources.


Geosciences ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 520
Author(s):  
Lawrence Cathles

Sedimentary basins are near-planetary scale stratigraphic-structural-thermochemical reactors that produce a cornucopia of organic and inorganic resources. The scale over which fluid movements coordinate in basins and the broad mix of processes involved is remarkable. Easily observed characteristics indicate the style of flow that has operated and suggest what kind of resources the basin has likely produced. The case for this proposition is built by reviewing and interpreting observations. Features that future basin models might include to become more effective exploration and development tools are suggested.


2003 ◽  
Vol 43 (1) ◽  
pp. 117 ◽  
Author(s):  
C.J. Boreham ◽  
J.E. Blevin ◽  
A.P. Radlinski ◽  
K.R. Trigg

Only a few published geochemical studies have demonstrated that coals have sourced significant volumes of oil, while none have clearly implicated coals in the Australian context. As part of a broader collaborative project with Mineral Resources Tasmania on the petroleum prospectivity of the Bass Basin, this geochemical study has yielded strong evidence that Paleocene–Eocene coals have sourced the oil and gas in the Yolla, Pelican and Cormorant accumulations in the Bass Basin.Potential oil-prone source rocks in the Bass Basin have Hydrogen Indices (HIs) greater than 300 mg HC/g TOC. The coals within the Early–Middle Eocene succession commonly have HIs up to 500 mg HC/g TOC, and are associated with disseminated organic matter in claystones that are more gas-prone with HIs generally less than 300 mg HC/g TOC. Maturity of the coals is sufficient for oil and gas generation, with vitrinite reflectance (VR) up to 1.8 % at the base of Pelican–5. Igneous intrusions, mainly within Paleocene, Oligocene and Miocene sediments, produced locally elevated maturity levels with VR up to 5%.The key events in the process of petroleum generation and migration from the effective coaly source rocks in the Bass Basin are:the onset of oil generation at a VR of 0.65% (e.g. 2,450 m in Pelican–5);the onset of oil expulsion (primary migration) at a VR of 0.75% (e.g. 2,700–3,200 m in the Bass Basin; 2,850 m in Pelican–5);the main oil window between VR of 0.75 and 0.95% (e.g. 2,850–3,300 m in Pelican–5); and;the main gas window at VR >1.2% (e.g. >3,650 m in Pelican–5).Oils in the Bass Basin form a single oil population, although biodegradation of the Cormorant oil has resulted in its statistical placement in a separate oil family from that of the Pelican and Yolla crudes. Oil-to-source correlations show that the Paleocene–Early Eocene coals are effective source rocks in the Bass Basin, in contrast to previous work, which favoured disseminated organic matter in claystone as the sole potential source kerogen. This result represents the first demonstrated case of significant oil from coal in the Australian context. Natural gases at White Ibis–1 and Yolla–2 are associated with the liquid hydrocarbons in their respective fields, although the former gas is generated from a more mature source rock.The application of the methodologies used in this study to other Australian sedimentary basins where commercial oil is thought to be sourced from coaly kerogens (e.g. Bowen, Cooper and Gippsland basins) may further implicate coal as an effective source rock for oil.


1970 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
K. G. Smith

The Basins Study Group is part of the Subsurface Section of the Bureau's Petroleum Exploration Branch and was formed in 1962 to collect and review available basic data on the sedimentary basins of Australia and Papua-New Guinea. The Core and Cuttings Laboratory forms the second part of the Subsurface Section, and the Laboratory's technical staff contribute to basin reviews by carrying out analyses of various kinds, and assist in the collection of data principally by providing thin sections of various sedimentary formations.Recent activities of the Basins Study Group include a review of the Sydney Basin, and an increased effort to assemble basic data on all sedimentary basins, with particular emphasis on the Canning and Carnarvon Basins.The review of the Sydney Basin is nearing completion. It was undertaken with the co-operation of the Geological Survey of New South Wales and received generous support from petroleum exploration companies active in the Basin. The review included detailed petrological examination of twelve wells and selected outcrop samples. The results confirmed the previously-held opinions that the reservoir characteristics of Sydney Basin sediments are generally unfavourable. At present there are no indications of untested onshore areas where an improvement in reservoir properties may occur. The Bureau petrologists detected the rare mineral dawsonite in eight wells; the mineral occurred mostly in Permian sediments, both in marine and non-marine rocks, but it was recorded also from Triassic rocks in the Kurrajong Heights No. 1 well. The review of geophysical data from the Sydney Basin was concentrated mainly on seismic work. The magnetic tapes of three surveys were replayed and considerable improvement in records was effected. Record sections of all seismic surveys were reduced photographically to a horizontal scale of 1:50,000 and the reductions were spliced to provide easily-managed cross-sections. The geophysical review is nearing completion and structure contour maps and isochrons are in preparation.The collection of basic data is done for each sedimentary basin as it becomes available, but present emphasis is on assembling data from Western Australian basins: all seismic traverses in the onshore parts of the Canning and Carnarvon Basins have been plotted at 1:250,000 scale, and with the co-operation of the Geological Survey of Western Australia, bibliographies of the Canning, Carnarvon and Perth Basins have been compiled for issue as Open-file Records. Bibliographies of the Papuan and Ipswich-Clarence Basins have also been compiled.


2018 ◽  
Vol 121 ◽  
pp. 267-276
Author(s):  
Waldemar Mironiuk

Transport of large amounts of cargo, mining and exploiting natural mineral resources, carrying large number of passengers by sea are characterized by high risk, even if the latest technologies are employed. It is not a long time ago that thousands of people lost their lives in catastrophes of ships, off-shore oil rigs and other marine objects. It is estimated that around 80% of accidents at sea are caused by making wrong decisions by persons keeping watch on the bridge, especially during difficult navigational and weather conditions. Accidents can also be caused by lack of skills necessary for crews or absence of appropriate tools. Therefore, it is important that seafarers should be trained in accordance with the highest standards. The scope of crew research and training may include both static, dynamic and damage stability. This stand bad also enables the analysis of the influence of the free surface effect of the liquid occurring in the compartments or tanks after damage to the ship's hull and the analysis of the impact of cargo operation on the ship's initial stability. Experiences gained on the research stand lead to a better understanding of the phenomena occurring in the current operation of the ship and to improve the safety of swimming. The aim of this article is presentation selected scenarios for the model tests of vessels and to familiarize with the construction of selected types of ship models and the capabilities of stability test stands in the aspect of improving the safety at sea.


Sign in / Sign up

Export Citation Format

Share Document