Research on Coating Dispersion of Liquid Wear-Resistant Decorative Paper

2011 ◽  
Vol 413 ◽  
pp. 241-245
Author(s):  
Zhi Jun Hu ◽  
Xue Jin Zhang

Liquid wear-resistant technology combines original decorative paper and the surface wear-resistant paper into one. Wear-resistant particles are coated directly on the surface of base decorative paper, forming a transparent wear-resistant protective layer. The suspension behavior of ultra-fine A12O3 in the aqueous phase was investigated. The aim was further realizing the good consistency among A12O3, melamine resin and other components. The main influencing factors [viz., dispersant type, dispersant dosage, dispersive methods and pH value] were investigated to get the optimum conditions. The results showed that the stable aqueous suspension of ultrafine A12O3 could be obtained under the following conditions: the concentration of superfine A12O3 5wt%, pH = 9, anionic dispersant APAAA, the amount of dispersant 0.4wt%, ultrasonic suspension time 30min.

2011 ◽  
Vol 130-134 ◽  
pp. 856-859
Author(s):  
Chun Sheng Ding ◽  
Yang Ping Fu ◽  
Qian Fen Zhu ◽  
Jing Fu

In this experiment quartz sand was chosen as a carrier to be coated by aluminous salt under alkaline condition, and then the specific surface area was tested, and the adsorption capability and Cd2+ removal influencing factors of modified sand were studied. The investigation results showed that the specific surface area of modified sand was 75.244m2/g which was 9.38 times of that of original sand; the removal efficiency of Cd2+ by aluminous salt modified sand reached 59% contrast to 39% of original sand with pH 7.00. It was also found that the removal efficiency of Cd2+ by the aluminous salt modified sand was reduced with the increase of initial concentration of Cd2+ solution, and was enhanced with the increase of pH value, the Cd2+ removal efficiency was almost 71% with pH 9.0.


2011 ◽  
Vol 236-238 ◽  
pp. 253-257
Author(s):  
Xian Zhen Zhang ◽  
De Si Sun ◽  
Hai Lin

The strain Jgj-1 was isolated from Gaoan bauxite ore. The relations of desilication of the strain Jgj-1 and the pH of solution, temperature, shaking speed, incubation time, particle size were investigated. The results shows the optimum conditions of bioleaching are as following: at 28°C, initial pH value is 7.2, particle size 0.056mm, 200rpm shaking speed, incubation 5-7 days.


1932 ◽  
Vol 15 (6) ◽  
pp. 667-689 ◽  
Author(s):  
W. J. V. Osterhout ◽  
W. M. Stanley

Inasmuch as attempts to explain accumulation by the Donnan principle have failed in the case of Valonia, a hypothesis of the steady state has been formulated to explain what occurs. In order to see whether this hypothesis is in harmony with physico-chemical laws attempts have been made to imitate its chief features by means of a model. The model consists of a non-aqueous layer (representing the protoplasmic surface) placed between an alkaline aqueous phase (representing the external solution) and a more acid aqueous phase (representing the cell sap). The model reproduces most of the features of the hypothesis. Attention may be called to the following points. 1. The semipermeable surface is a continuous non-aqueous phase. 2. Potassium penetrates by combining with an acid HX in the non-aqueous layer to form KX which in turn reacts with an acid HA in the sap to form KA. Since KX is little dissociated in the non-aqueous layer potassium appears to pass through it chiefly in molecular form. 3. The internal composition depends on permeability, e.g., sodium penetrates less rapidly than potassium and in consequence potassium predominates over sodium in the "artificial sap." The order of penetration in the model is the same as in Valonia, i.e., K > Na > Ca > Mg, and Cl > SO4, but the quantitative resemblance is not close, e.g., the difference between potassium and sodium, and chloride and sulfate is much less in the model. 4. The formation of KA and NaA in the sap raises its osmotic pressure and water enters. 5. The concentration of potassium and sodium and the osmotic pressure become much greater inside than outside. For example, potassium may become 200 times as concentrated inside as outside. 6. No equilibrium occurs but a steady state is reached in which water and salt enter at the same rate so that the composition of the sap remains constant as its volume increases. 7. Since no equilibrium occurs there is a difference of thermodynamic potential between inside and outside. At the start the thermodynamic potential of KOH is much greater outside than inside. This difference gradually diminishes and in the steady state has about the same value as in Valonia. The difference in pH value between the internal and external solutions is also similar in both cases (about 2 pH units). 8. Accumulation does not depend on the presence of molecules or ions inside which are unable to pass out. One important feature of the hypothesis is not seen in the model: this is the exchange of HCO3 for Cl-. Experiments on this point are in progress.


2018 ◽  
Vol 7 (3.36) ◽  
pp. 170
Author(s):  
Umar M. Ibrahim ◽  
Saeed I. Ahmed ◽  
Babagana Gutti ◽  
Idris M. Muhammad ◽  
Usman D. Hamza ◽  
...  

The combination of Irish potato waste (IPW) and poultry waste (PW) can form a synergy resulting into an effective substrate for a better biogas production due to some materials they contain. In this work, optimization and kinetic study of biogas production from anaerobic digestion of IPW and PW was investigated. Response surface methodology (RSM) was applied to optimize conditions such as initial pH, solids concentrations and waste ratios. The anaerobic digestion of the two wastes was carried out in the mesophilic condition and Box-Behnken design (BBD) was used to develop and analyze a predictive model which describes the biogas yield. The results revealed that there is a good fit between the experimental and the predicted biogas yield as revealed by the coefficient of determination (R2) value of 97.93%. Optimization using quadratic RSM predicts biogas yield of 19.75% at the optimal conditions of initial pH value 7.28, solids concentration (w/v) 9.85% and waste ratio (IPW:PW) 45:55%. The reaction was observed to have followed a first order kinetics having R2 and relative squared error (RSE) values of 90.61 and 9.63% respectively. Kinetic parameters, such as rate constant and half-life of the biogas yield were evaluated at optimum conditions to be 0.0392 day-1 and 17.68 days respectively. The optimum conditions and kinetic parameters generated from this research can be used to design real bio-digesters, monitor substrate concentrations, simulate biochemical processes and predict performance of bio-digesters using IPW and PW as substrate.  


2017 ◽  
Vol 7 (4) ◽  
pp. 44 ◽  
Author(s):  
Takeshi Kato ◽  
Shotaro Saito ◽  
Shigekatsu Oshite ◽  
Shukuro Igarashi

A powerful technique for the concentration of rhodium (Rh) in plating wastewater was developed. The technique entails complexing Rh with 1-(2-pyridylazo)-2-naphthol (PAN) followed by homogeneous liquid–liquid extraction (HoLLE) with Zonyl FSA. The optimum HoLLE conditions were determined as follows: [ethanol]T = 30.0 vol.%, pH = 4.00, and Rh:PAN = 1:5. Under these optimum conditions, 88.1% of Rh was extracted into the sedimented liquid phase. After phase separation, the volume ratio [aqueous phase (Va) /sedimented liquid phase (Vs)] of Va and Vs was 1000 (50 mL → 0.050 mL). We then applied the new method to wastewater generated by the plating industry. The phase separation was satisfactorily achieved when the volume was scaled up to 1000 mL of the actual wastewater; 84.7% of Rh was extracted into the sedimented liquid phase. After phase separation, Va/Vs was 588 (1000 mL - 1.70 mL).


Author(s):  
Naruephon Watthanaphap ◽  
Surapol Natakankitkul ◽  
Nuchnart Jonglaekha

Objective: The objective of this research was to improve the method of extracting pesticide residue from vegetable by using microwave-assisted extraction, headspace single drop microextraction (MAE-HS-SDME) and analysed by gas chromatograph-mass spectrometer (GC-MS).Methods: Microwave-assisted extraction (MAE) coupled with headspace single drop microextraction (HS-SDME) was used for extraction of chlorpyrifos insecticide residues in lettuce. The optimum conditions for obtaining efficient extraction have been tried; kind and quantity of solvent, extraction time, microwave irradiation power, pH value and the amount of salt added in the sample followed the method of Plackett–Burman. Optimum conditions for efficient analysis were evaluated by using a central composite design (CCD) combined with a response surface methodology (RSM).Results: The optimum extract conditions from CCD for the MAE-HS-SDME method were: using 1.5 µl of n-butyl acetate, 460 W of the microwave power, 4.5 min of the extraction time, no pH adjustment and no salt addition. Verification of the optimized experimental conditions showed that validation of the determination coefficient ranges from the concentrations of 0.01 to 0.10 mg/l, equal to 0.999; the percentages of variation coefficient were ranges from 4.6 to 7.7%; the recoveries ranges from 70.0 to 79.5%; limit of detection was 0.003 mg/kg and limit of quantitation was 0.01 mg/kg.Conclusion: In this study, the MAE-HS-SDME method coupled with GC-MS was found most suitable for chlorpyrifos analysis. The results obtained from analyzing chlorpyrifos in lettuce samples indicated that this method is rapid, simple, sensitive, reducible cost and safety for the analyst and the environment.


2007 ◽  
Vol 20 (2) ◽  
pp. 163-172 ◽  
Author(s):  
Razika Zouaghi ◽  
Abdennour Zertal ◽  
Bernard David ◽  
Sylvie Guittonneau

Abstract The photocatalytic degradation of two phenylurea herbicides, monolinuron (MLN) and linuron (LN), was investigated in an aqueous suspension of TiO2 using simulated solar irradiation. The objective of the study was to compare their photocatalytic reactivity and to assess the influence of various parameters such as initial pesticide concentration, catalyst concentration and photonic flux on the photocatalytic degradation rate of MLN and LN. A comparative study of the photocatalytic degradation kinetics of both herbicides showed that these two compounds have a comparable reactivity with TiO2/simulated sun light. Under the operating conditions of this study, the photocatalytic degradation of MLN and LN followed pseudo first-order decay kinetics. The kobs values indicated an inverse dependence on the initial herbicide concentration and were fitted to the Langmuir-Hinshelwood equation. Photocatalytic degradation rates increased with TiO2 dosage, but overdoses did not necessarily increase the photocatalytic efficiency. The degradation rate of MLN increased with radiant flux until an optimum at 580 W m‑2 was reached and then decreased. Under these conditions, an electron-hole recombination was favored. Finally, the photocatalytic degradation rate depended on pH, where an optimum was found at a pH value close to the pH of the point of zero charge (pH = 6).


2012 ◽  
Vol 549 ◽  
pp. 500-503
Author(s):  
Jie Hong Lei

In geological disposal of radioactive wastes, the study of Americium migration is very important for the safety evaluation of the repository. The forms of chemical components of Americium presence in aqueous solution that directly affect its migration behavior provide a basis for analog computation of the element. This paper uses PHREEQC, the geochemical model, for analog computation of forms of Americium presence in two types of groundwater, and analyzes the morphologies of the main elements and the influencing factors. The results show that the morphology of Americium is mainly controlled by the characteristics of the chemical composition of groundwater, while the PH value also has a great impact on the forms of Americium presence.


2020 ◽  
Vol 31 (5) ◽  
pp. 279-290
Author(s):  
Manhal Ijbara ◽  
Kanae Wada ◽  
Junichiro Wada ◽  
Jayanetti Asiri Jayawardena ◽  
Michiyo Miyashin

BACKGROUND: Surface replication is a nondestructive evaluation technique applied in examining surface wear by recording surface irregularities, especially in conditions when surfaces of interest cannot be further manipulated to fit directly under a microscope to be examined. Enamel is the outermost protective layer of the human teeth and is constantly stressed by mastication forces which results in enamel wear. OBJECTIVE: To date, a procedure combining the clinical and microscopic examination of enamel surfaces is absent, which hinders the early diagnosis and comprehension of the wear process. METHODS: This study investigated the role of replication sheets in registering microscopic wear on human enamel surfaces by both negative and positive replication techniques. RESULTS: The sheets replicated wear features successfully. Sheets were compatible to use with multiple microscopes, with proper preparation, including high resolution microscopes such as the scanning electron microscope and transmitting electron microscope.


2011 ◽  
Vol 295-297 ◽  
pp. 1522-1525
Author(s):  
Xiao Min Wang ◽  
Jun Duo

Electroless nickel plating on magnesium alloy was studied when NiSO4as the main salt in the solution. The influence of the composition of the solution and process parameters on the coating appearance, the plating rate and bath stability was studied too. As a result, the optimum conditions of electroless nickel are: The main salt and reducing agent molar ratio between 0.3 and 0.45, mixed complexion agents was used, temperature 90°C, pH value 6.5.


Sign in / Sign up

Export Citation Format

Share Document