Screening and Desilication of a Silicate Bacteria

2011 ◽  
Vol 236-238 ◽  
pp. 253-257
Author(s):  
Xian Zhen Zhang ◽  
De Si Sun ◽  
Hai Lin

The strain Jgj-1 was isolated from Gaoan bauxite ore. The relations of desilication of the strain Jgj-1 and the pH of solution, temperature, shaking speed, incubation time, particle size were investigated. The results shows the optimum conditions of bioleaching are as following: at 28°C, initial pH value is 7.2, particle size 0.056mm, 200rpm shaking speed, incubation 5-7 days.

2018 ◽  
Vol 7 (3.36) ◽  
pp. 170
Author(s):  
Umar M. Ibrahim ◽  
Saeed I. Ahmed ◽  
Babagana Gutti ◽  
Idris M. Muhammad ◽  
Usman D. Hamza ◽  
...  

The combination of Irish potato waste (IPW) and poultry waste (PW) can form a synergy resulting into an effective substrate for a better biogas production due to some materials they contain. In this work, optimization and kinetic study of biogas production from anaerobic digestion of IPW and PW was investigated. Response surface methodology (RSM) was applied to optimize conditions such as initial pH, solids concentrations and waste ratios. The anaerobic digestion of the two wastes was carried out in the mesophilic condition and Box-Behnken design (BBD) was used to develop and analyze a predictive model which describes the biogas yield. The results revealed that there is a good fit between the experimental and the predicted biogas yield as revealed by the coefficient of determination (R2) value of 97.93%. Optimization using quadratic RSM predicts biogas yield of 19.75% at the optimal conditions of initial pH value 7.28, solids concentration (w/v) 9.85% and waste ratio (IPW:PW) 45:55%. The reaction was observed to have followed a first order kinetics having R2 and relative squared error (RSE) values of 90.61 and 9.63% respectively. Kinetic parameters, such as rate constant and half-life of the biogas yield were evaluated at optimum conditions to be 0.0392 day-1 and 17.68 days respectively. The optimum conditions and kinetic parameters generated from this research can be used to design real bio-digesters, monitor substrate concentrations, simulate biochemical processes and predict performance of bio-digesters using IPW and PW as substrate.  


2016 ◽  
Vol 74 (6) ◽  
pp. 1335-1345 ◽  
Author(s):  
Fengfeng Ma ◽  
Baowei Zhao ◽  
Jingru Diao

The purpose of this work is to investigate adsorption characteristic of corn stalk (CS) biochar for removal of cadmium ions (Cd2+) from aqueous solution. Batch adsorption experiments were carried out to evaluate the effects of pH value of solution, adsorbent particle size, adsorbent dosage, and ionic strength of solution on the adsorption of Cd2+ onto biochar that was pyrolytically produced from CS at 300 °C. The results showed that the initial pH value of solution played an important role in adsorption. The adsorptive amount of Cd2+ onto the biochar decreased with increasing the adsorbent dosage, adsorbent particle size, and ionic strength, while it increased with increasing the initial pH value of solution and temperature. Cd2+ was removed efficiently and quickly from aqueous solutions by the biochar with a maximum capacity of 33.94 mg/g. The adsorption process was well described by the pseudo-second-order kinetic model with the correlation coefficients greater than 0.986. The adsorption isotherm could be well fitted by the Langmuir model. The thermodynamic studies showed that the adsorption of Cd2+ onto the biochar was a spontaneous and exothermic process. The results indicate that CS biochar can be considered as an efficient adsorbent.


2014 ◽  
Vol 1073-1076 ◽  
pp. 336-339
Author(s):  
Tian Qi Li ◽  
Hui Wang ◽  
Ya Qi Zhu ◽  
Zhao Yong Bian

Response surface methodology was applied to investigate the optimum degradation conditions of paracetamol using Ag/BiVO4 photocatalysts under the visible light irradiation. Experimental results show that the optimum degradation conditions were: catalyst dosage quantity was 80 mg, Ag-catalyst loading was 5%, and the initial pH value of the solution was 6, respectively. Under this condition, the degradation efficiency of paracetamol was 77.9% within 5 h under the visible light irradiation.


2010 ◽  
Vol 62 (4) ◽  
pp. 829-836 ◽  
Author(s):  
Huaili Zheng ◽  
Guocheng Zhu ◽  
Qiang He ◽  
Peng Hu ◽  
Shijun Jiao ◽  
...  

The ultrasonic degradation of direct pink was investigated in this study. Parameters affecting ultrasonic degradation degree such as ultrasonic power, pH, bubbling gas and the presence of inorganic salts, were examined. The results showed that the addition of inorganic salts (NaCl, CuSO4) facilitated the degradation of direct pink while the addition of K2CO3 inhibited it. The degradation degree was enhanced significantly in the presence of saturated gases as listed here in decreasing order of effectiveness: argon > air > oxygen > nitrogen. The degradation degree of direct pink was largely influenced by pH value and boosted by acidic condition. The optimum degree could be achieved when pH value was 3.0 or when the sound power was 150 W. However, the degradability decreased notably in alkaline condition. Also, ultrasound/H2O2 technology was used, and the results showed that ultrasound/H2O2 has a better effect on the degradation than ultrasound alone or with H2O2 oxidation. After 120 minutes, the degradation degree could reach 78.0% under the optimum conditions, when the ultrasonic power was 150 W, 50 μL H2O2, CuSO4 and argon atmosphere being added and the initial pH value of the model dye was 3.0.


2016 ◽  
Vol 36 (1) ◽  
pp. 296-301
Author(s):  
DY Tsunatu ◽  
KG Atiku ◽  
TT Samuel ◽  
BI Hamidu ◽  
DI Dahutu

The production of bio-ethanol from Rice Straw (Oryza sativa) was carried out using rice straw as a feedstock and a combination of Yeast Extracts Peptone Dextrose (YEPD)at 0.2%(w/v) 0.4%(w/v), 0.6%(w/v), 0.8%(w/v) and 1%(w/v) concentrations and Saccharomyces cerevisiae (yeast) at 0.5% (w/v), 1%(w/v), 1.5%(w/v), 2%(w/v) and 2.5%(w/v) concentrations as cells for fermentation. The study determined the most suitable pre-treatment method from the following pretreatment methods; 1M NaOH and heating. IM NaOH pre-treatment gave the highest cellulose and lowest lignin content. The effects of substrate concentration values of 1g/l, 2g/l, 4g/l, 6g/l and 8g/l; with particle size of 300μm and cell loading combination of YEPD at 0.2%(w/v) 0.4%(w/v), 0.6%(w/v), 0.8%(w/v), 1%(w/v) concentrations and Saccharomyces cerevisiae (yeast) at 0.5% (w/v), 1%(w/v), 1.5%(w/v), 2%(w/v), 2.5%(w/v) on the fermentation process were investigated to obtain optimum conditions of fermentation. The optimum conditions of fermentation were obtained at temperature of 330C, pH value of 4.0, substrate concentration of 4g/l, particle size 300μm and YEPD to yeast ratio of 0.8/1.5 after 72 hours of fermentation time. Also substrate concentration of 4g/l, gave highest bioethanol yield of 49.50%. http://dx.doi.org/10.4314/njt.v36i1.36


2012 ◽  
Vol 512-515 ◽  
pp. 1541-1544 ◽  
Author(s):  
Yan Xiang Wang ◽  
Chao Jiang ◽  
Hua Yin Liang

Abstract. The Si and SiC in wire cutting waste slurry from photovoltaic silicon were recovery and separation by froth floatation in this paper, and the lauryl amine and sodium hamates were used as collector and flocculants, respectively. The effects of collector concentration, inhibitor species, and solution temperature and pH value on separation efficiency were investigated. The morphology of collected solid was characterized by SEM.The phase composition of collected solid was characterized by XRD. Laser particle seizer was used to study the particle size distribution. The results showed that temperature had little effect on the flotation efficiency. When pH value was 7, the lauryl amine adapts to neutral environment and the collecting effect of collector was the best, and cellulose was considered to be the best inhibitors in four different inhibitors. When volume fraction of lauryl amine, sodium humate flocculant, cellulose inhibitor, and temperature and pH value were 0.16%, 0.16%, 0.25‰, 30°C and 7, respectively, the solid collecting rate and collected SiC purity were respectively 51.94% and 94.7%.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1645 ◽  
Author(s):  
Jianhua Xiong ◽  
Yinna Liang ◽  
Hao Cheng ◽  
Shuocheng Guo ◽  
Chunlin Jiao ◽  
...  

Intimate coupling of photocatalysis and biodegradation (ICPB) has shown promise in removing unwanted organic compounds from water. In this study, bagasse cellulose titanium dioxide composite carrier (SBC-TiO2) was prepared by low-temperature foaming methods. The optimum preparation conditions, material characterization and photocatalytic performance of the composite carrier were then explored. By conducting a single factor test, we found that bagasse cellulose with a mass fraction of 4%, a polyvinyl alcohol solution (PVA) with a mass fraction of 5% and 20 g of a pore-forming agent were optimum conditions for the composite carrier. Under these conditions, good wet density, porosity, water absorption and retention could be realized. Scanning electron microscopy (SEM) results showed that the composite carrier exhibited good biologic adhesion. X-ray spectroscopy (EDS) results confirmed the successful incorporation of nano-TiO2 dioxide into the composite carrier. When the mass concentration of methylene blue (MB) was 10 mg L−1 at 200 mL, 2 g of the composite carrier was added and the initial pH value of the reaction was maintained at 6, the catalytic effect was best under these conditions and the degradation rate reached 78.91% after 6 h. The method of preparing the composite carrier can aid in the degradation of hard-to-degrade organic compounds via ICPB. These results provide a solid platform for technical research and development in the field of wastewater treatment.


2013 ◽  
Vol 791-793 ◽  
pp. 116-119 ◽  
Author(s):  
Peng Ren ◽  
Wei Hua Lin

Lipase is a kind of important hydrolase. It was widely used in the fields of food, leather, detergent and pharmaceutical. The production of lipase from Arthrobacter sp. SD5 was studied in the present paper. The medium composition and culture condition were optimized in order to improve lipase production. The results showed the best optimum conditions were on the following: culture temperature (40°C); initial pH value (8.0); liquid volume (20%); carbon source (olive oil, 2.5%); nitrogen source (peptone, 1.0%); biosurfactant (Tween-80, 0.2%).


2021 ◽  
Vol 4 (2) ◽  
pp. 7-15
Author(s):  
Arzuhan SIHOGLU TEPE ◽  
Emine KACMAZOGLU ◽  
H. Nursevin OZTOP ◽  
Rana TASKIN

Cu2+ contaminated areas pose serious health risk for the living organisms. In this study, the biosorption of Cu2+ by Pseudomonas putida immobilized on loofa sponge (Luffa cylindrica L.) was investigated. Effects of the particle size of loofa sponge, initial pH, temperature, initial Cu2+ concentration and the stirring speed on the adsorption of Cu2+ were examined. Optimum conditions were determined as follows: loofa sponge particle size is 0.42 - 0.85 mm, initial pH is 5.0, temperature is 30 °C, initial Cu2+ concentration is 25 mg/l, and stirring speed is 130 rpm. According to the results of kinetic calculations, Qmax and ro values were determined as 0.394 mg/g and 0.077 mg/g.min for P. putida immobilized on loofa sponge, respectively, while they were found to be 0.096 mg/g and 0.052 mg/g.min for the loofa sponge only. It is thought that Cu2+ can be removed effectively from the wastewaters by using P. putida immobilized on loofa sponge.


Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 931
Author(s):  
Xuefeng Wei ◽  
Laiyuan Zeng ◽  
Weiwei Lu ◽  
Juan Miao ◽  
Ruichang Zhang ◽  
...  

A polypyrrole-modified bimetallic electrode composed of Pd-Ag on a Ti substrate (Pd-Ag/PPY/Ti) was successfully prepared via a chemical deposition method, and was applied to the electrocatalytic hydrodechlorination of 4-chlorophenol (4-CP) in aqueous solution. The electrode was characterized by cyclic voltammetry (CV), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Various influences on the dechlorination efficiency of 4-chlorophenol, including applied current, initial pH value, and temperature, were studied. The dechlorination efficiency of 4-CP reached 94% within 120 min under the optimum conditions, i.e., a dechlorination current of 6 mA, an initial pH of 2.30, and a temperature of 303 K. The apparent activation energy of the dechlorination of 4-CP by the Pd-Ag/PPY/Ti electrode was calculated to be 49.6 kJ/mol. The equivalent conversion rate constant kPd was 0.63 L.gPd−1·min−1, which was higher than the findings presented in comparable literature. Thus, a highly effective bimetallic electrode with promising application prospects and low Pd loading was fabricated.


Sign in / Sign up

Export Citation Format

Share Document