The Time Response of Exponential Doping NEA InGaAs Photocathode Applied to near Infrared Streak Cameras

2011 ◽  
Vol 415-417 ◽  
pp. 1403-1406
Author(s):  
Wei Dong Tang ◽  
Wen Zheng Yang ◽  
Zhi Peng Cai ◽  
Chuan Dong Sun

An exponential doping NEA InGaAs photocathode is theoretically proposed to apply in the near infrared streak camera. The photocathode time response is calculated and analyzed by using a photoelectron non-steady method. The numerical results show that the excited electrons in the InGaAs active layer is accelerated due to the built-in electric field induced by the exponential doping structure, which shortens the transport time of minority carriers in the photocathode and thus, the time response is greatly improved. In addition, the exponential doping InGaAs photocathode possesses time response of less than 10 picoseconds and near-infrared quantum efficiency of 10%.

1999 ◽  
Vol 557 ◽  
Author(s):  
Rodney Estwick ◽  
Vikram L. Dalal

AbstractQuantum efficiency(QE) spectroscopy of amorphous silicon and alloy solar cells has been used for many years now to determine the mobility-lifetime products for minority carriers. Similarly, matching of I(V) curves, assuming a linear model for collection as a function of applied voltage, has been used to quantify the effects of degradation on cell performance by estimating changes in the collection length [or range] of holes. In this paper, we do a numerical simulation of these techniques, using the AMPS I-D model developed by Fonash and his coworkers. The simulation shows that neither the lifetime nor the electric field in the devices is constant as a function of position. Nor is the electric field a linear function of applied voltage, particularly when the voltage exceeds about half the built-in voltage. The uniformity of the lifetime depends on the applied bias and on the defect densities in the material. This variation in electric field and lifetime and nonlinearity with applied voltage makes questionable some of the conclusions drawn from fitting device I(V) curves, particularly under forward bias. However, when one uses only a limited range of forward bias, or, preferably, make measurements in cells with thicker i layers under reverse bias, one c.an make reasonable estimates of the hole mobility-lifetime(μτ) product or the collection lengthl The simulations also show that indeed, it is the hole μτ product which is the limiting parameter.


Author(s):  
Yun Zhao ◽  
Xiaoqiang Feng ◽  
Menghan Zhao ◽  
Xiaohu Zheng ◽  
Zhiduo Liu ◽  
...  

Employing C3N QD-integrated single-crystal graphene, photodetectors exhibited a distinct photocurrent response at 1550 nm. The photocurrent map revealed that the fast response derive from C3N QDs that enhanced the local electric field near graphene.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jonas Kublitski ◽  
Axel Fischer ◽  
Shen Xing ◽  
Lukasz Baisinger ◽  
Eva Bittrich ◽  
...  

AbstractDetection of electromagnetic signals for applications such as health, product quality monitoring or astronomy requires highly responsive and wavelength selective devices. Photomultiplication-type organic photodetectors have been shown to achieve high quantum efficiencies mainly in the visible range. Much less research has been focused on realizing near-infrared narrowband devices. Here, we demonstrate fully vacuum-processed narrow- and broadband photomultiplication-type organic photodetectors. Devices are based on enhanced hole injection leading to a maximum external quantum efficiency of almost 2000% at −10 V for the broadband device. The photomultiplicative effect is also observed in the charge-transfer state absorption region. By making use of an optical cavity device architecture, we enhance the charge-transfer response and demonstrate a wavelength tunable narrowband photomultiplication-type organic photodetector with external quantum efficiencies superior to those of pin-devices. The presented concept can further improve the performance of photodetectors based on the absorption of charge-transfer states, which were so far limited by the low external quantum efficiency provided by these devices.


2003 ◽  
Vol 42 (22) ◽  
pp. 4415 ◽  
Author(s):  
Chris Hicks ◽  
Mark Kalatsky ◽  
Richard A. Metzler ◽  
Alexander O. Goushcha

2009 ◽  
Vol 94 (9) ◽  
pp. 093504 ◽  
Author(s):  
Y. Yang ◽  
W. Z. Shen ◽  
H. C. Liu ◽  
S. R. Laframboise ◽  
S. Wicaksono ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 428
Author(s):  
Reza Masoudian Saadabad ◽  
Christian Pauly ◽  
Norbert Herschbach ◽  
Dragomir N. Neshev ◽  
Haroldo T. Hattori ◽  
...  

Fast detection of near-infrared (NIR) photons with high responsivity remains a challenge for photodetectors. Germanium (Ge) photodetectors are widely used for near-infrared wavelengths but suffer from a trade-off between the speed of photodetection and quantum efficiency (or responsivity). To realize a high-speed detector with high quantum efficiency, a small-sized photodetector efficiently absorbing light is required. In this paper, we suggest a realization of a dielectric metasurface made of an array of subwavelength germanium PIN photodetectors. Due to the subwavelength size of each pixel, a high-speed photodetector with a bandwidth of 65 GHz has been achieved. At the same time, high quantum efficiency for near-infrared illumination can be obtained by the engineering of optical resonant modes to localize optical energy inside the intrinsic Ge disks. Furthermore, small junction capacitance and the possibility of zero/low bias operation have been shown. Our results show that all-dielectric metasurfaces can improve the performance of photodetectors.


Author(s):  
Xiaoxiao Xu ◽  
Ke Xiao ◽  
Guozhi Hou ◽  
Yu Zhu ◽  
Ting Zhu ◽  
...  

Two composite layers are used to enhance the efficiency of Si-based near-infrared perovskite light-emitting devices, which are produced in ambient air, and the external quantum efficiency increased to 7.5%.


2021 ◽  
Author(s):  
Felix Bardonnet ◽  
Axel Crocherie ◽  
Marios Barlas ◽  
Quentin Abadie ◽  
Clemence Jamin-Mornet

2021 ◽  
Author(s):  
Tao An ◽  
Suiyang Liu

Abstract This paper proposes an inverted ternary organic photodetector (OPD), whose structure is ITO/PEIE/PC61BM/P3HT:PCPDTBT/MoO3 /Al. The use of PEIE as the cathode buffer layer avoids the influence of acidic PEDOT:PSS on the surface and life of the conventional device . The preparation of the ternary active layer ensures the photoelectric characteristics of the device in the visible-infrared broad spectrum range. In this experiment, the effect of PEIE thickness on the working mode of the device was studied by changing the concentration of the spin-coated PEIE solution. Finally, when the solution of PEIE is less than 0.45wt%, the device works in the diode mode, on the contrary, it works in the photoconductive mode. And under 550nm illumination (optical power 4.02mW/cm2) , the device achieves a responsivity of 1.64A/W and an external quantum efficiency of 370%.


Sign in / Sign up

Export Citation Format

Share Document