Preparation and Dielectric Properties of Dy-B-Si-O Glass-Doped Ba0.6Sr0.4TiO3 Ceramics

2011 ◽  
Vol 418-420 ◽  
pp. 323-327
Author(s):  
Gui Shan Liu ◽  
Lan He Yang ◽  
Tie Cheng Ma ◽  
Kai Zhuo Wu ◽  
Zheng Jie Zhang ◽  
...  

Dy-B-Si-O glass-doped Ba0.6Sr0.4TiO3 (BST) ceramics based on sol-gel-derived powders were prepared. Effects of B2O3-SiO2 in Dy-B-Si-O glass on phase structure, microstructures and dielectric properties of the BST ceramics were investigated. The results showed that the main crystal phase of BST ceramics with appropriate B2O3-SiO2 in Dy-B-Si-O glass had a perovskite type structure. Grain size decreased and density increased compared with pure BST ceramics. However, the secondary phase Ba2TiSi2O8 was detected when the percentage of B2O3-SiO2 in Dy-B-Si-O glass additive was over 7 mol%, and increased with the increasing of B2O3-SiO2. With the increasing of B2O3-SiO2, the dielectric constant increased firstly and then decreased, the dielectric loss decreased firstly and then increased, the Curie temperature moved to lower temperature firstly and then to higher temperature.

2020 ◽  
Vol 16 ◽  
Author(s):  
Alliya Qamar ◽  
Rehana Zia ◽  
Madeeha Riaz

Background: Hydroxyapatite is similar to bone mineral in chemical composition, has good biocompatibility with host tissue and bone. Objective: This work aims to tailor the mechanical and dielectric properties of hydroxyapatite with zinc sudstitution, to improve wearability of implant and accelerate the healing process. Method: Pure and zinc incorporated hydroxyapatite Ca10(PO4)6(OH)2 samples have been successfully prepared by means of the chemical precipitation method. Results: The results showed that hydroxyapatite(Hap) having hexagonal structure was the major phase identified in all the samples. It was found that secondary phase of β-tricalcium phosphate (β-TCP) formed due to addition of Zinc resulting in biphasic structure BCP (Hap + β-TCP). A minor phase of ZnO also formed for higher concentration of Zn (Zn ≥ 2mol%) doping. It was found that the Zn incorporation to Hap enhanced both mechanical and dielectric properties without altering the bioactive properties. The microhardness increased upto 0.87 GPa for Zn concentration equal to 1.5mol%, which is comparable to the human bone ~0.3 - 0.9 GPa. The dielectric properties evaluated in the study showed that 1.5 mol% Zn doped hydroxyapatite had highest dielectric constant. Higher values of dielectric constant at low frequencies signifies its importance in healing processes and bone growth due to polarization of the material under the influence of electric field. Conclusion: Sample Z1.5 having 1.5 mol% Zn doping showed the most optimized properties suitable for bone regeneration applications.


2015 ◽  
Vol 241 ◽  
pp. 226-236 ◽  
Author(s):  
Neha Solanki ◽  
Rajshree B. Jotania

Influence of Ca substitution on structural, magnetic and dielectric properties of Ba3Co2-xCaxFe24O41(where x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), prepared by Sol-Gel auto-combustion method, has been investigated in present studies. The obtained powder was sintered at 950 oC for 4 hrs. in the static air atmosphere. Structural analysis of Ca-doped Ba3Co2-xCaxFe24O41powders revealed pure Z-type hexaferrite phase at low temperature. The frequency dependent dielectric constant (Єʹ) and magnetic properties such as remanent magnetization (Mr), saturation magnetization (Ms) and coercivity (Hc) were studied. It is observed that coercivity increased gradually with increase in calcium content. The real dielectric constant (Єʹ) and dielectric loss tangent (tan δ) were studied in the frequency range of 20Hz to 2MHz. The dielectric parameters for all samples show normal dielectric behavior as observed in hexaferrites. Contents of Paper


2011 ◽  
Vol 326 ◽  
pp. 127-130
Author(s):  
Xian Li Huang ◽  
Fu Ping Wang ◽  
Ying Song

In the present work, the microstructure and microwave dielectric properties of BaTi4O9 ceramics derived from a sol-gel precursor were presented. Density measuring results demonstrated that the largest densities of ceramic sample about 96.7% could be reached by virtue of a cool iso-static press and a sintering process at at 1300 °C for 6 hours. The dielectric constant (εr), quality factor (Q×f) and the temperature coefficients (τf) of the BaTi4O9 ceramic samples were 36.65, 28000 GHz, +20.2 ppm/°C, respectively. XRD, SEM and XPS were used to characterize the microstructure of the ceramics samples. Substantial Ti3+ was proposed to be the cause of dielectric loss.


Author(s):  
T. M. Correia ◽  
Q. Zhang

Full-perovskite Pb 0.87 Ba 0.1 La 0.02 (Zr 0.6 Sn 0.33 Ti 0.07 )O 3 (PBLZST) thin films were fabricated by a sol–gel method. These revealed both rhombohedral and tetragonal phases, as opposed to the full-tetragonal phase previously reported in ceramics. The fractions of tetragonal and rhombohedral phases are found to be strongly dependent on film thickness. The fraction of tetragonal grains increases with increasing film thickness, as the substrate constraint throughout the film decreases with film thickness. The maximum of the dielectric constant ( ε m ) and the corresponding temperature ( T m ) are thickness-dependent and dictated by the fraction of rhombohedral and tetragonal phase, with ε m reaching a minimum at 400 nm and T m shifting to higher temperature with increasing thickness. With the thickness increase, the breakdown field decreases, but field-induced antiferroelectric–ferroelectric ( E AFE−FE ) and ferroelectric–antiferroelectric ( E FE−AFE ) switch fields increase. The electrocaloric effect increases with increasing film thickness. This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’.


2012 ◽  
Vol 512-515 ◽  
pp. 1180-1183
Author(s):  
Qian Qian Jia ◽  
Hui Ming Ji ◽  
Shan Liu ◽  
Xiao Lei Li ◽  
Zheng Guo Jin

The (Ba, Sr)TiO3 (hereafter BST) ceramics are promising candidate for applying in tunable devices. MgO coated BST-Mg2TiO4 (BSTM-MT) composite ceramics were prepared to obtain the low dielectric constant, low dielectric loss, good dielectric constant temperature stability, and high tunability of BST ceramics. The Ba0.55Sr0.40Ca0.05TiO3 nanoparticles were coated with MgO using the precipitation method and then mixed with Mg2TiO4 powders to fabricate BSTM-MT composite ceramics. The morphologies, phases, elements, and dielectric properties of the sintered ceramics were investigated. The core-shell structure of BST powder wrapped with MgO was clearly observed from the TEM image. After sintered at 1100 °C for 2 h, the composite ceramics expressed dense microstructures from SEM images and two main phases BST and Mg2TiO4 were detected in the XRD patterns. The dielectric constant and loss tangent were both reduced after the coating. The reduced dielectric constant and loss tangent of BSTM-MT were 190, 0.0011 (2MHz), respectively. The ceramics exhibited the diffuse phase transition near the Curie temperature and the Curie temperature shifted from 10 °C to 5 °C after the coating. Since the continuous Ti-O bonds were disconnected with the MgO coating, the tunability was reduced to 15.14 % under a DC bias field of 1.1 kV/mm. The optimistic dielectric properties made it useful for the application of tunable capacitors and phase shifters.


1986 ◽  
Vol 72 ◽  
Author(s):  
G. V. Chandrashekhar ◽  
M. W. Shafer

AbstractDielectric properties have been measured for a series of porous and fully densified silica glasses, prepared by the sol-gel technique starting from Si-methoxide or Si-fume. The results for the partially densified glasses do not show any preferred orientation for porosity. When fully densified (˜2.25 gms/cc) without any prior treatment of the gels, they have dielectric constants of ≥ 6.5 and loss factors of 0.002 at 1 MHz, compared to values of 3.8 and <0.001 for commercial fused silica. There is no corresponding anomaly in the d.c. resistivity. Elemental carbon present to the extent of 400–500 ppm is likely to be the main cause for this enhanced dielectric constant. Extensive cleaning of the gels prior to densification to remove this carbon were not completely successful pointing to the difficulty in preparing high purity, low dielectric constant glasses via the organic sol-gel route at least in the bulk form.


2012 ◽  
Vol 576 ◽  
pp. 326-329 ◽  
Author(s):  
Amid Shakeri ◽  
Hossein Abdizadeh ◽  
Mohammad Reza Golobostanfard

Lead zirconate titanate nanopowder Pb(Zr0.53Ti0.47)O3 (PZT) was prepared by modified sol-gel method with 1-propanol as solvent and acetylacetone as stabilizer. The microstructure and particle size measurements at different heat treatment conditions were characterized by field emission scanning electron microscopy and x-ray diffraction analysis. It was found that the PZT nanoparticles calcinated at 600 °C showed mean diameter of 75-125 nm with high crystallinity of perovskite-type structure.


2009 ◽  
Vol 421-422 ◽  
pp. 65-68
Author(s):  
Jing Ji Zhang ◽  
Ji Wei Zhai ◽  
Ming Wei Zhang ◽  
Xi Yao

xMnCO3–(1–x)[70wt% (10wt% MgO–90wt% Ba0.4Sr0.6TiO3)–30wt% MgAl2O4] (where x=0.0, 0.5, 1.0, 2.0, 5.0 and 10.0wt%) composite ceramics have been prepared through the solid-state reactions. Three phases, corresponding to the Ba0.4Sr0.6TiO3(BST), MgAl2O4(MA) and MgO phases, are clearly visible in the composite ceramics. The permittivity peak is initially enhanced and shifted toward a higher temperature and then suppressed, shifted toward a lower temperature. Meanwhile, the tunability (calculated by [ε(E0)−ε(E)]/ε(E0)) is also initially improved and then decreased by doping MnCO3.


2011 ◽  
Vol 687 ◽  
pp. 251-256 ◽  
Author(s):  
Ying He ◽  
Huai Wu Zhang ◽  
Yuan Xun Li ◽  
Wei Wei Ling ◽  
Yun Yan Wang ◽  
...  

CaCu3Ti4O12 ceramics doped with 0-2.0 wt% Li2CO3 were prepared by the solid-state reaction, and their electric and dielectric properties were investigated. It is found that these ceramics had the properties of high dielectric constant and comparatively low dielectric loss. At the doping amount of 0.5 wt%, the dielectric constant is kept to be 105 with weak frequency dependence below 105 Hz, and its loss tangent (tan δ) is suppressed below 0.1 between 300 Hz-5 kHz (with the minimum value of 0.06 at 1 kHz from 218 K to 338 K). The impedance spectroscopy analysis confirms that the decrease of dielectric loss is mainly due to the increase of resistance in the grain boundary, which may be related to the influence of Ti4O7 secondary phase. Our result indicates that doping Li2CO3 is an efficient method to optimize the dielectric properties of CaCu3Ti4O12.


Sign in / Sign up

Export Citation Format

Share Document