The Study of Bus Superstructure Strength Based on ECE R66

2012 ◽  
Vol 430-432 ◽  
pp. 1799-1804 ◽  
Author(s):  
Guo Sheng Zhang ◽  
Wei Wang ◽  
Song Ai Piao ◽  
Xuan Dong

Taking a full-monocoque body as the research object, the finite element analysis theory was applied to build the finite element model of the bus and the numerical simulation environment of the structural strength of the superstructure. The vehicle centre of gravity position determination was studied and calculated. According to the ECE R66 equivalent authentication method, the rollover test of body section was carried out. The rigid and strength characteristic of bus superstructure were evaluated. On this basis, the energy absorbing capability of body section during the rollover process was studied and evaluated. The results showed that the body section of bus was complied with the regulatory requirements; its structural safety characteristic was good. This design method of rollover crash safety had important significance and value to research and development of manufacturer.

2011 ◽  
Vol 346 ◽  
pp. 379-384
Author(s):  
Shu Bo Xu ◽  
Yang Xi ◽  
Cai Nian Jing ◽  
Ke Ke Sun

The use of finite element theory and modal analysis theory, the structure of the machine static and dynamic performance analysis and prediction using optimal design method for optimization, the new machine to improve job performance, improve processing accuracy, shorten the development cycle and enhance the competitiveness of products is very important. Selected for three-dimensional CAD modeling software-UG NX4.0 and finite element analysis software-ANSYS to set up the structure of the beam finite element model, and then post on the overall structure of the static and dynamic characteristic analysis, on the basis of optimized static and dynamic performance is more superior double wall structure of the beam. And by changing the wall thickness and the thickness of the inner wall, as well as the reinforcement plate thickness overall sensitivity analysis shows that changes in these three parameters on the dynamic characteristics of post impact. Application of topology optimization methods, determine the optimal structure of the beam ultimately.


2021 ◽  
Author(s):  
Sinan Yıldırım ◽  
Ufuk Çoban ◽  
Mehmet Çevik

Suspension linkages are one of the fundamental structural elements in each vehicle since they connect the wheel carriers i.e. axles to the body of the vehicle. Moreover, the characteristics of suspension linkages within a suspension system can directly affect driving safety, comfort and economics. Beyond these, all these design criteria are bounded to the package space of the vehicle. In last decades, suspension linkages have been focused on in terms of design development and cost reduction. In this study, a control arm of a diesel public bus was taken into account in order to get the most cost-effective design while improving the strength within specified boundary conditions. Due to the change of the supplier, the control arm of a rigid axle was redesigned to find an economical and more durable solution. The new design was analyzed first by the finite element analysis software Ansys and the finite element model of the control arm was validated by physical tensile tests. The outputs of the study demonstrate that the new design geometry reduces the maximum Von Mises stress 15% while being within the elastic region of the material in use and having found an economical solution in terms of supplier’s criteria.


2019 ◽  
Vol 22 (16) ◽  
pp. 3487-3502
Author(s):  
Hossein Moravej ◽  
Tommy HT Chan ◽  
Khac-Duy Nguyen ◽  
Andre Jesus

Structural health monitoring plays a significant role in providing information regarding the performance of structures throughout their life spans. However, information that is directly extracted from monitored data is usually susceptible to uncertainties and not reliable enough to be used for structural investigations. Finite element model updating is an accredited framework that reliably identifies structural behavior. Recently, the modular Bayesian approach has emerged as a probabilistic technique in calibrating the finite element model of structures and comprehensively addressing uncertainties. However, few studies have investigated its performance on real structures. In this article, modular Bayesian approach is applied to calibrate the finite element model of a lab-scaled concrete box girder bridge. This study is the first to use the modular Bayesian approach to update the initial finite element model of a real structure for two states—undamaged and damaged conditions—in which the damaged state represents changes in structural parameters as a result of aging or overloading. The application of the modular Bayesian approach in the two states provides an opportunity to examine the performance of the approach with observed evidence. A discrepancy function is used to identify the deviation between the outputs of the experimental and numerical models. To alleviate computational burden, the numerical model and the model discrepancy function are replaced by Gaussian processes. Results indicate a significant reduction in the stiffness of concrete in the damaged state, which is identical to cracks observed on the body of the structure. The discrepancy function reaches satisfying ranges in both states, which implies that the properties of the structure are predicted accurately. Consequently, the proposed methodology contributes to a more reliable judgment about structural safety.


Author(s):  
Suchao Xie ◽  
Xuanjin Du ◽  
Hui Zhou ◽  
Da Wang ◽  
Zhejun Feng

In this study, the crashworthiness of a subway train was assessed by establishing a finite element model for the first three carriages of the train and the track using the Hypermesh software. By utilising the *MAT_HONEYCOMB material model, a honeycomb in an anti-climbing energy-absorbing device was simulated. Moreover, the process of a subway train – travelling at a speed of 25 km/h – colliding with another identical train in a stationary and non-braking state was simulated by employing the finite element analysis software Hypermesh and LS-DYNA. The process of simulation analysis was divided into two parts: (1) analysis of the anti-climbing energy-absorbing devices under static compression for the investigation of energy absorption and (2) collision analysis of the whole train. The contributions of the proposed energy-absorbing structure – at the end of driver’s cab, the coupler and draft gears on each section – to the overall energy absorption in a train collision were calculated. Furthermore, based on the EN15227 standard, the crashworthiness of the train with respect to the survival space for occupants, train acceleration and uplift of wheels relative to the track was evaluated. The coupler of the first carriage fails in a collision at 25 km/h, and the coupler and draft gear are the main energy-absorbing devices. *MAT_HONEYCOMB was used to define the honeycomb materials in anti-climbing energy-absorbing devices and could simulate the mechanical performance thereof. The crashworthiness of the train meets the relevant standard requirements.


2000 ◽  
Author(s):  
Y. W. Kwon ◽  
J. E. Jolly ◽  
T. A. Hughes

Abstract The biomechanical response of a finite element model of the human thorax and a protective body armor system was studied under impact loading from a projectile. The objective of the study was to create a viable finite element model of the human thorax. The model was validated by comparing the results of tests of body armor systems conducted on cadavers to results obtained from finite element analysis. A parametric study was undertaken to determine the essential components of the model. The results from this investigation determined that the path of force propagation from a body armor system to the thorax upon bullet impact is directly through the vest to the sternum and then through the skeleton to the rest of the body. Thus, any parameters that affect the components in this pathway were essential to the model. This included the muscles, their geometries, material properties, and viscosity, as well as the Young’s modulus of the sternochondral cartilage and the bones themselves.


2012 ◽  
Vol 166-169 ◽  
pp. 534-537
Author(s):  
Yan Zhong Ju ◽  
Dong Xu Yu ◽  
Wang Dehong

In order to study and solve the problem of connection on the part of the prestressed tendons RPC concrete pole engineering. Design connecting flange suitable for the existing part of the prestressed tendons RPC concrete pole developed by our group used the connection flange in Steel tower as the prototype.Through the ABAQUS software to establish the finite element model between the connection flange and part of the prestressed tendons RPC concrete pole, and carry out finite element analysis.Through the finite element analysis to get results whether the design of connecting flange can meet the strength requirements when the prestressed tendons RPC concrete pole is under ultimate load, so to get the practical design method of the 500kv part prestressed RPC concrete pole connecting flange.


Author(s):  
Gustavo Simão Rodrigues ◽  
Hans Ingo Weber ◽  
Larissa Driemeier

There are many models of impact used to predict the post-impact conditions of a system and all of them are based on Hertz’s theory, dated from the nineteenth century, where the repulsive force is proportional to the deformation of the bodies under contact and may also be proportional to the rate of deformation. The objective of this work is to analyze the behavior of the bodies during impact using some contact models and compare the results to a Finite Element Method model. The main parameters which will be evaluated are the body velocities, the contact force and the deformation of the bodies. An advantage of using the Finite Element Method is the possibility to apply plastic deformation to the model according to material definition. In the present study, it will be used Johnson–Cook plasticity model where the parameters are obtained based on empirical tests of real materials. Thus, it is possible to compare the behavior of elastic and plastic numerical models with the finite element model and to verify how these models reproduce the impact between solid bodies.


2011 ◽  
Vol 80-81 ◽  
pp. 1016-1020 ◽  
Author(s):  
Wei Huang ◽  
Chang Song Ou ◽  
Hai Man Lu ◽  
Zheng Liang Xie

According to the limit working conditions of the gantry milling machine column, this paper adopts Parametric Design Language APDL to set up finite element model and make finite element analysis. Based on the analysis, the topology optimization method of column structure is proposed, and the optimal design method is established to minimize the weight. The finite element analysis is made again to analyze the rearranged column structure. Compared with the design made through experience, optimally designed column can reduce 10% weight. And the critical displacement and maximum stress are not affected.


2014 ◽  
Vol 919-921 ◽  
pp. 64-67
Author(s):  
Ji Hong Hu ◽  
Xiu Cai Li

Taking structure strengthen of a large hotel as the engineering background, based on superposition principle, put forward the design method of concrete two-way slab strengthened with partially bonded steel plate. According to the finite element analysis, the solid finite element model is established, and then the stress, strain and deflection of two-way slab strengthened with bonded steel plate is obtained, at the meantime compared with the load test datum in situ. The analysis results show that the finite element software is a reliable tool applied to analyze the design of two-way slab strengthened with bonded steel plate. When the increasing load is larger, partially bonding steel plate strengthening has more advantage and economize than bonding carbon fiber strengthening on two-way slab, meanwhile that slab strengthened with partially bonded steel plate has better mechanical properties, strength and stiffness.


2011 ◽  
Vol 230-232 ◽  
pp. 620-624
Author(s):  
Guang Yao Zhao ◽  
Peng Fu ◽  
Chuan Yin Tang ◽  
Di Zhang

Aimed at the body of SUV vehicle , according to the criteria of FMVSS216 vehicle safety regulations , in LS-DYNA software environment , the simulation analysis of effects of the design parameters of main components of the body on roll crashworthiness in the process of vehicle crashing and rolling is presented in the paper , based on finite element analysis method, with the test methods of applying pendulum collision. The characteristics of the crashworthiness and energy absorption of the pillar pendulum which have different design parameters, such as shapes and thickness, et. al., are emphasized particularly in the paper. A simple finite element model of SUV is established, the effect of different design parameters of stiffness of body cover to the whole distribution of energy absorption and the reasonable transfer of total energy is discussed. The noticeable issue and advice on body design of SUV is proposed.


Sign in / Sign up

Export Citation Format

Share Document