The Influence of HAZ on Fatigue Life of 16Mn Steel

2008 ◽  
Vol 44-46 ◽  
pp. 323-328
Author(s):  
Gang Chen ◽  
Xue Mei Luo ◽  
Xu Chen ◽  
Wei Hua Zhang

In order to understand the influence of Heat-Affected Zone (HAZ) on fatigue properties of 16Mn steel, a series of cyclic torsional tests were conducted on 16Mn weld metal, the base metal, and the HAZ metal. The specimens of 2mm diameter were uniformly-spaced taken from a bulk 16Mn plate, which included a V-style welded joint in the center, and the space for each specimen was 4mm. From cyclic fatigue tests performed on specimens at different positions, one can observe that the fatigue damage evolution in the HAZ is faster than those in the weld and the base metal, i.e., HAZ has a significant effect on fatigue life of 16Mn. In addition, the peak stress decline curves of HAZ specimens in different rows are considerably diversified, but the damage evolution and fatigue properties of HAZ metal are similar in spite of their locations.

2014 ◽  
Vol 670-671 ◽  
pp. 1087-1090
Author(s):  
Wei Ping Ouyang ◽  
Liang Sheng Chen ◽  
Xiu Dong Xu

The research of fatigue properties of the butt welded joint, though a large number of fatigue tests are need to be carried out, has significant influence to hoisting equipment’s design, development and using safety. This paper conducted a study on simulating the fatigue properties of widely used steel Q345 butt welded joint’s by finite element method based on the improved linear equivalent structural stress theory. The originally massive amount of fatigue tests and data processing could be saved. In order to ensure the accuracy of the fatigue modeling, a batch of Q345 butt welded joints were prepared for the fatigue tests which is used to contrast with the modeling result. The stress distribution under different load situation and the fatigue life of the joints, which have profound reference significance to hoisting machinery industry, can be acquired through modeling.


2012 ◽  
Vol 468-471 ◽  
pp. 2010-2013
Author(s):  
Liang Zhang ◽  
Xue Song Liu ◽  
Lin Sen Wang ◽  
Zi Qi Ma ◽  
Hong Yuan Fang

Local tensile properties and fatigue properties of Al-Zn-Mg alloy welded joint were investigated. Experiment results show that A7N01 aluminium alloy welded joint is highly inhomogenous both in microstructure and mechanical performances. Ultimate tensile strength and yield strength of base metal are superior compared to HAZ and weld metal. U-shape notched specimens were used in fatigue tests to study local fatigue properties of the joint. Fatigue tests results demonstrate that the difference of local fatigue life is conspicuous in the three regions. The difference of yield strength is believed to result from the diversity of fatigue life for each region in A7N01 aluminium alloy welded joint.


2021 ◽  
Vol 1035 ◽  
pp. 292-296
Author(s):  
Zi Chao Peng ◽  
Jun Ying Sheng ◽  
Xu Qing Wang ◽  
Yue Tang

Low cycle fatigue (LCF) properties of a powder metallurgy(PM) nickel base superalloy FGH720Li were systematically studied in this work, including smooth LCF and notched LCF tested at various temperatures and different stress. The relationship between the fatigue life and applied stress was analyzed both for smooth fatigue and notch fatigue tests. The effects of loading frequency and stress ratio on LCF behavior were also studied. As an important influencing factor of the fatigue life in powder metallurgy superalloy, the effect of inclusions on LCF life was also investigated. The results showed that the fatigue properties of FGH720Li alloy was excellent, when tested at the temperature of 450°C and applied stress of 1230MPa, the fatigue life could exceed 5×104 cycles. When tested at 650°C and 1150MPa, the average fatigue life was still beyond 2×105 cycles.


Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 495
Author(s):  
Ruslan Sikhamov ◽  
Fedor Fomin ◽  
Benjamin Klusemann ◽  
Nikolai Kashaev

The objective of the present study was to estimate the influence of laser shock peening on the fatigue properties of AA2024-T3 specimens with a fastener hole and to investigate the possibility to heal the initial cracks in such specimens. Fatigue cracks of different lengths were introduced in the specimens with a fastener hole before applying laser shock peening. Deep compressive residual stresses, characterized by the hole drilling method, were generated into the specimens by applying laser shock peening on both sides. Subsequently, the specimens were subjected to fatigue tests. The results show that laser shock peening has a positive effect regarding the fatigue life improvement in the specimens with a fastener hole. In addition, laser shock peening leads to a healing effect on fatigue cracks. The efficiency of this effect depends on the initial crack length. The effect of laser shock peening on the fatigue life periods was determined by using resonant frequency graphs.


Author(s):  
Akira Shimamoto ◽  
Ryo Kubota ◽  
Sung-mo Yang ◽  
Dae-kue Choi ◽  
Weiping Jia

An experimental study of high pressure water jet peening treatment on chromium steal SCr420 H3V2L2 is conducted to study the effects of cavitation impacts of high-speed water on fatigue crack initiation and propagation of notched specimens. There are six different kinds of specimens. First three kinds are treated with; only annealing, only water quenching, and only oil quenching. Other three kinds are treated with above heat treatment and water jet peening, respectively. An axial tensile fatigue tests’ condition is 260MPa maximum stress amplitude, 0 stress ratio and 10Hz frequency, while in-situ observation by SEM is employed. Although fatigue life of the specimens with annealing and water jet peening is shorter than that of only annealing, fatigue life of water and oil quenching with water jet peening specimens is obviously longer than those without water jet peening treatment. Water jet peening has increased residual stress inside the specimens on the latter case and raised their fatigue strength. In-situ observation on the crack tips approves above analysis.


2018 ◽  
Vol 165 ◽  
pp. 08002 ◽  
Author(s):  
Hamza Lamnii ◽  
Moussa Nait-Abdelaziz ◽  
Georges Ayoub ◽  
Jean-Michel Gloaguen ◽  
Ulrich Maschke ◽  
...  

Polymers operating in various weathering conditions must be assessed for lifetime performance. Particularly, ultraviolet (UV) radiations alters the chemical structure and therefore affect the mechanical and fatigue properties. The UV irradiation alters the polymer chemical structure, which results into a degradation of the mechanical and fatigue behavior of the polymer. The polymer properties degradation due to UV irradiation is the result of a competitive process of chain scission versus post-crosslinking. Although few studied investigated the effect of UV irradiation on the mechanical behaviour of thermoplastics, fewer examined the UV irradiation effect on the fatigue life of polymers. This study focuses on investigating the effect of UV irradiation on the fatigue properties of bulk semi-crystalline polymer; the low density Polyethylene (LDPE). Tensile specimens were exposed to different dose values of UV irradiation then subjected to fatigue loading. The fatigue tests were achieved under constant stress amplitude at a frequency of 1Hz. The results show an important decrease of the fatigue limit with increasing absorbed UV irradiation dose.


2012 ◽  
Vol 198-199 ◽  
pp. 146-149
Author(s):  
Wen Qin Han ◽  
Jin Yu Zhou

To obtain fatigue design data of the train wheel steel , the fatigue tests were carried out for the steel of K type and B type train wheel separately, which fatigue limit was measured using the fluctuation method, the fatigue life of two kinds of wheel steels were tested using the grouping method at the three stress levels, two different materials and different structures have an influence on the fatigue properties of the wheels using reliability principle. The fatigue life distribution of the B type is scattered relatively . S-N curve equation and P-S-N curve equation of the two kinds of steel were calculated . The theoretical basis were put up for developing design standards and safety evaluation of the both wheel.


2014 ◽  
Vol 692 ◽  
pp. 424-427
Author(s):  
Wei Ping Ouyang ◽  
Liang Sheng Chen ◽  
Xiu Dong Xu

The fatigue property of the butt welded joint has significant influence to hoisting equipment’s design, manufacture and using safety for its extensive application. This paper conducted a study on the fatigue properties of a series of the most commonly used thickness steel Q345 butt welded joints. Through fatigue tests and fracture analysis, the fatigue pattern and fracture law of the joints were revealed. Combining with the finite element modeling, the all field stress distribution situation was obtained. This has profound reference significance to hoisting machinery research.


2010 ◽  
Vol 643 ◽  
pp. 69-77 ◽  
Author(s):  
Ana Maria Gontijo Figueiredo ◽  
Berenice Mendonça Gonzalez ◽  
Vicente Tadeu Lopes Buono ◽  
Paulo José Modenesi

Superelasticity is closely related to shape memory effect. It refers to the property presented by some materials submitted to large strains (usually up to about 8%) to restore their original shape immediately after unloading without the need of heating. This phenomenon results directly from a diffusionless transformation of the material from an austenitic to a martensitic phase (martensitic transformation). The recovering mechanism is the reverse transformation, from martensite to austenite. This paper compares fatigue live curves obtained in bending-rotation fatigue tests carried out on wires of NiTi alloys with three different microstructures, stable austenite, unstable austenite (superelastic), and stable martensite. These curves are also compared to data from the literature. The tests were strain controlled and the wires were submitted to strain amplitudes from 0.6% to 12.0%. To minimize changes in material properties, the wire temperature was monitored using a thermocouple and controlled by its rotation speed. For strain amplitudes up to 4%, the εa-Nf curve for superelastic wires was consistent with those reported in the literature, closely approaching the curve of the stable austenite wire. For higher strain amplitudes, fatigue life of superelastic wires increased with strain until it approached the fatigue life curve of stable martensitic wire. This unusual behavior results in a “Z-shaped” curve for high strain values. It is possibly linked to the changes in microstructure and fatigue properties that occur when the superelastic material is deformed.


2007 ◽  
Vol 345-346 ◽  
pp. 275-278
Author(s):  
Dae Whan Kim ◽  
Chang Hee Han ◽  
Woo Seog Ryu

Tensile and fatigue properties were evaluated for base and welded type 316LN stainless steel. Welding methods were GTAW (308L, Ar environment) and GTAWN (316L, Ar + N2 environment). Yield strength of weld joint was higher than that of base metal but elongation of weld joint was lower than that of base metal. UTS of weld joint was slightly lower than that of base metal. Yield strength and elongation with welding method were almost same. Fatigue life of weld joint was lower than that of base metal but fatigue strength of weld joint was higher than that of base metal. Ferrite content was increased with welding. Fatigue life welded by GTAWN was better than that of GTAW at RT and 600°C. This fatigue life behavior was consistent with the behavior of ferrite content.


Sign in / Sign up

Export Citation Format

Share Document