Coupled Structural/Thermal Analysis of Cylindrical Part of Multilayered Composite Vessel

2012 ◽  
Vol 445 ◽  
pp. 589-594 ◽  
Author(s):  
A. Hocine ◽  
F.K. Achira ◽  
H. Ghouaouala

This paper focuses on the coupled structural/thermal response of a cylindrical part of multi-layered composite vessel. Uniform and parabolic temperature distributions are chosen for the structural loads. In this work, an analytical model is proposed in which the laminate composite is assumed to be an anisotropic purely elastic material. Assuming that the interface between the core and skin are perfectly bound, continuity conditions for the displacement and stress, the suggested analytical model provides an exact solution for stresses and strains on the cylindrical section of the vessel solution submitted hygrothermal loading coupled with internal pressure with end effect.

Author(s):  
Vivek Vishwakarma ◽  
Ankur Jain

A number of past papers have described experimental techniques for measurement of thermal conductivity of substrates and thin films of technological interest. Nearly all substrates measured in the past are rigid. There is a lack of papers that report measurements on a flexible substrate such as thin plastic. The paper presents an experimental methodology to deposit a thin film microheater device on a plastic substrate. This device, comprising a microheater line and a temperature sensor line is used to measure the thermal conductivity of the plastic substrate using the transient thermal response of the plastic substrate to a heating current. An analytical model describing this thermal response is presented. Thermal conductivity of the plastic substrate is determined by comparison of experimental data with the analytical model. Results described in this paper may aid in development of an understanding of thermal transport in flexible substrates.


2020 ◽  
Vol 330 ◽  
pp. 01002
Author(s):  
Abdelatif Merabtine ◽  
Abdelhamid Kheiri ◽  
Salim Mokraoui

Radiant floor heating systems (FHS) are considered as reliable heating systems since they ensure maintaining inside air temperature and reduce its fluctuations more efficiently than conventional heating systems. The presented study investigates the dynamic thermal response of an experimental FHS equipped with an anhydrite radiant slab. A new simplified model based on an analytical correlation is proposed to evaluate the heating radiant slab surface temperature and examine its thermal behavior under dynamic conditions. In order the validate the developed analytical model, an experimental scenario, under transient conditions, was performed in a monitored full-scale test cell. 2D and 3D numerical models were also developed to evaluate the accuracy of the analytical model. The method of Design of Experiments (DoE) was used to both derive meta-models, to analytically estimate the surface temperature, and perform a sensitivity study.


2019 ◽  
Vol 9 (5) ◽  
pp. 917
Author(s):  
Wenquan Liu ◽  
Yuanfu Lu ◽  
Rongbin She ◽  
Guanglu Wei ◽  
Guohua Jiao ◽  
...  

We numerically investigate the thermal effects in a cornea illuminated by terahertz radiation. By modifying the bioheat and Arrhenius equations, we studied the heat-transfer and temperature distributions in the corneal tissue, and evaluated the potential thermal damage. The influence of the beam radius and power density are discussed. We also estimated the effective cornea-collagen shrinkage region, and evaluated the degree of thermal damage in the cornea. We expect this work to open up a novel effective and safe thermal-treatment approach based on THz radiation for cornea reshaping in the field of ophthalmology.


2019 ◽  
Vol 969 ◽  
pp. 231-236
Author(s):  
Chandan Kumar ◽  
Nilamber Kumar Singh

A comparative study of three different aluminium alloys, Al2618, Al4032 and Al6061 made internal combustion engine pistons is done on their responses under mechanical and thermal loads using finite element methods. In this study, a 3D solid model of piston is created in CATIA and the simulations of the static structural analysis, steady-state thermal analysis and transient thermal analysis are carried out in ANSYS. Stress and temperature distributions on critical areas of piston are pointed out for appropriate modification in piston design. The temperature and heat flux variations with time are presented in transient thermal analysis. Taguchi method and topological optimization are applied to optimize the process parameters and to select the appropriate material for the piston.


2012 ◽  
Vol 503-504 ◽  
pp. 11-14
Author(s):  
Yan Jun Zhao ◽  
Xin Jun Li ◽  
Yong Hai Wu ◽  
Cheng Xu

Thermal is a important factor that affect weapon firing accuracy and security in the process of weapon fire, so thermal analysis of weapon has important meaning . Aim at researched Weapon, the finite element model of the gun body was built, the temperature field of the gun body was calculated by FEM. The effects of temperature of the gun body on firer and aiming mechanism were also studied. Current research work will be helpful the weapon design


2021 ◽  
Vol 59 (1) ◽  
pp. 77-107

Political risk concerns the profits and investment plans of international business (MNCs, FDI). The Social Dimensions of Political Risk – SDPR is an unchartered territory of political risk. Consequently, on the basis of the analysis of theories of risk, political risk, systems, values and globalization the concept for SDPR is generated. This concept is based on basic assumptions: 1) society is a system whose elements are subsystems; 2) the societal subsystem is at the core of society; 3) the relation between societal subsystem and society is such as the relation element – system; 4) political risk is systemic; 5) values are axial to the system, and their carrier is the societal subsystem; 6) laws are an artificial construct that has only a value function, but is not a value; 7) the incommensurability between values and the above mentioned artificial construct generates SDPRs that are relevant to the risk for society. A formal theoretical and analytical model of SDPR and a value triangle and conceptual index of SDPR based on it are introduced. Key conclusions pertain to the following: the need for reconsider the paradigm of democracy; greater participation of the societal subsystem; need for subsystems’ mutual restraint based on the principle of authorities’ restraint.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5518
Author(s):  
Yi Bao ◽  
Matthew S. Hoehler ◽  
Christopher M. Smith ◽  
Matthew Bundy ◽  
Genda Chen

Detailed information about temperature distribution can be important to understand structural behavior in fire. This study develops a method to image three-dimensional temperature distributions in steel–concrete composite slabs using distributed fiber optic sensors. The feasibility of the method is explored using six 1.2 m × 0.9 m steel–concrete composite slabs instrumented with distributed sensors and thermocouples subjected to fire for over 3 h. Dense point clouds of temperature in the slabs were measured using the distributed sensors. The results show that the distributed sensors operated at material temperatures up to 960 °C with acceptable accuracy for many structural fire applications. The measured non-uniform temperature distributions indicate a spatially distributed thermal response in steel–concrete composite slabs, which can only be adequately captured using approaches that provide a high density of through-depth data points.


Sign in / Sign up

Export Citation Format

Share Document