Comparisons of EWM and DSM for Load-Carrying Capacity of Cold-Formed Lipped Channel Columns under Axial Compression

2012 ◽  
Vol 446-449 ◽  
pp. 94-97
Author(s):  
Song Jun Zheng ◽  
Yan Wu Yang ◽  
De Fa Sun

The stability bearing capacity of cold-formed lipped channel columns under axial compression is presented. It is shown that DSM is valid for prediction the stability capacity of cold-formed lipped channel columns under axial compression. The results calculated by suggested method agree quite well with the effective width method in Technical code of cold-formed thin-wall steel structures (GB50018-2002) and the test results are safe.

2012 ◽  
Vol 166-169 ◽  
pp. 526-529 ◽  
Author(s):  
Ming Chen ◽  
Yang Sun

Technical Code for Design of Cold-formed Thin-wall Steel Structures mainly provides single-limb and lattice sections of axially-loaded members of cold-formed thin-walled steel, and there is no related design method for compound section. In this paper, combined the relevant test datas, the load-carrying performance of short axially-loaded column with gusset plate between double cold-formed C steel were analyzed through effective width method from code and DSM. By comparing the computing results with test results, it indicates that the computing results of DSM are more consistent with the test datas. As a result, I come up with suggestion formulas of effective width method which are applied to short axially-loaded column with gusset plate between double cold-formed thin-walled C steel.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4267
Author(s):  
Qi Ye ◽  
Yingchun Gong ◽  
Haiqing Ren ◽  
Cheng Guan ◽  
Guofang Wu ◽  
...  

Cross-laminated timber (CLT) elements are becoming increasingly popular in multi-storey timber-based structures, which have long been built in many different countries. Various challenges are connected with constructions of this type. One such challenge is that of stabilizing the structure against vertical loads. However, the calculations of the stability bearing capacity of the CLT members in axial compression in the structural design remains unsolved in China. This study aims to determine the stability bearing capacity of the CLT members in axial compression and to propose the calculation method of the stability coefficient. First, the stability coefficient calculation theories in different national standards were analyzed, and then the stability bearing capacity of CLT elements with four slenderness ratios was investigated. Finally, based on the stability coefficient calculation formulae in the GB 50005-2017 standard and the regression method, the calculation method of the stability coefficient for CLT elements was proposed, and the values of the material parameters were determined. The result shows that the average deviation between fitting curve and calculated results of European and American standard is 5.43% and 3.73%, respectively, and the average deviation between the fitting curve and the actual test results was 8.15%. The stability coefficients calculation formulae could be used to predict the stability coefficients of CLT specimens with different slenderness ratios well.


1987 ◽  
Vol 2 (3) ◽  
pp. 77-80 ◽  
Author(s):  
Marvin R. Pyles ◽  
Joan Stoupa

Abstract In order to quantify the stump anchor capacity of small second-growth Douglas-fir (Pseudotsuga menziesii [Mirb]. Franco) trees, load tests to failure were conducted on 18 stumps from trees 7 to 16.5 in dbh. The tests produced ultimate loads that varied as the square of the tree diameter. However, the ultimate load typically occurred at stump system deformations that were far in excess of that which would be considered failure of a stump anchor. A hyperbolic equation was used to describe the load-deformation behavior of each stump tested and was generalized to describe all the test results. West. J. Appl. For. 2(3):72-80, July 1987.


2019 ◽  
Vol 22 (13) ◽  
pp. 2755-2770
Author(s):  
Fuyun Huang ◽  
Yulong Cui ◽  
Rui Dong ◽  
Jiangang Wei ◽  
Baochun Chen

When casting wet concrete into hollow steel tubular arch during the construction process of a concrete-filled steel tubular arch bridge, an initial stress (due to dead load, etc.) would be produced in the steel tube. In order to understand the influence of this initial stress on the strength of the concrete-filled steel tubular arch bridge, a total of four single tubular arch rib (bare steel first) specimens (concrete-filled steel tubular last) with various initial stress levels were constructed and tested to failure. The test results indicate that the initial stress has a large influence on the ultimate load-carrying capacity and ductility of the arch structure. The high preloading ratio will reduce significantly the strength and ductility that the maximum reductions are over 25%. Then, a finite element method was presented and validated using the test results. Based on this finite element model, a parametric study was performed that considered the influence of various parameters on the ultimate load-carrying capacity of concrete-filled steel tubular arches. These parameters included arch slenderness, rise-to-span ratio, loading method, and initial stress level. The analysis results indicate that the initial stress can reduce the ultimate loading capacity significantly, and this reduction has a strong relationship with arch slenderness and rise-to-span ratio. Finally, a method for calculating the preloading reduction factor of ultimate load-carrying capacity of single concrete-filled steel tubular arch rib structures was proposed based on the equivalent beam–column method.


1994 ◽  
Vol 61 (4) ◽  
pp. 998-1000 ◽  
Author(s):  
M. Savoia ◽  
J. N. Reddy

The post-buckling of stiffened, cross-ply laminated, circular determine the effects of shell lamination scheme and stiffeners on the reduced load-carrying capacity. The effect of geometric imperfection is also included. The analysis is based on the layerwise shell theory of Reddy, and the “smeared stiffener” technique is used to account for the stiffener stiffness. Nu cylinders under uniform axial compression is investigated to merical results for stiffened and unstiffened cylinders are presented, showing that imperfection-sensitivity is strictly related to the number of nearly simultaneous buckling modes.


Author(s):  
D. Rudland ◽  
R. Lukes ◽  
P. Scott ◽  
R. Olson ◽  
A. Cox ◽  
...  

Typically in flaw evaluation procedures, idealized crack shapes are assumed for both subcritical and critical crack analyses. Past NRC-sponsored research have developed estimation schemes for predicting the load-carrying capacity of idealized cracks in nuclear grade piping and similar metal welds at the operating conditions of nuclear power reactors. However, recent analyses have shown that growth of primary water stress corrosion cracks (PWSCC) in dissimilar metal (DM) welds is not ideal; in fact, very unusual complex crack shapes may form, i.e., a very long surface crack that has a finite length through-wall crack in the same plane. Even though some experimental data on base metals exists to demonstrate that complex shaped cracks in high toughness materials fail under limit load conditions, other experiments demonstrate that the tearing resistance is significantly reduced. At this point, no experimental data exists for complex cracks in DM welds. In addition, it is unclear whether the idealized estimation schemes developed can be used to predict the load-carrying capacity of these complex-shaped cracks, even though they have been used in past analyses by the nuclear industry. Finally, it is unclear what material strength data should be used to assess the stability of a crack in a DM weld. The NRC Office of Nuclear Regulatory Research, with their contractor Battelle Memorial Institute, has concluded an experimental program to confirm the stability behavior of complex shaped circumferential cracks in DM welds. A combination of full-scale pipe experiments and a variety of laboratory experiments were conducted. A description of the pipe test experimental results is given in a companion paper. This paper describes the ongoing analyses of those results, and the prediction of the load-carrying capacity of the circumferential cracked pipe using a variety of J-estimation scheme procedures. Discussions include the effects of constraint, appropriate base metal material properties, effects of crack location relative to the dissimilar base metals, and the limitations of the currently available J-estimation scheme procedures. This paper concludes with plans for further development of J-estimation scheme procedures for circumferential complex cracks in DM welds.


Author(s):  
D. Rudland ◽  
P. Scott ◽  
R. Olson ◽  
A. Cox

Typically in flaw evaluation procedures, idealized flaw shapes are assumed for both subcritical crack growth and critical crack stability analyses. Past NRC-sponsored research have developed estimation schemes for predicting the load-carrying capacity of idealized flaws in nuclear grade piping and similar metal welds at the operating conditions of nuclear power reactors. However, recent analyses have shown that growth of primary water stress corrosion cracks (PWSCC) in dissimilar metal (DM) welds is not ideal; in fact, very unusual complex crack shapes may form, i.e., a very long surface crack that has a finite length through-wall crack in the same plane. Even though some experimental data on base metal cracks exist to demonstrate that complex shaped cracks in high toughness materials fail under limit load conditions, other experiments demonstrate that the tearing resistance is significantly reduced. At this point, no experimental data exists for complex cracks in DM welds. In addition, it is unclear whether the idealized estimation schemes developed can be used to predict the load carrying capacity of these complex-shaped flaws, even though they have been used in past analyses by the nuclear industry. Finally, it is unclear what material strength data should be used to assess the stability of a crack in a DM weld. The NRC Office of Nuclear Regulatory Research (RES), with their contractor Battelle Memorial Institute, has begun an experimental program to confirm the stability behavior of these complex shaped flaws in DM welds. A combination of thirteen full-scale pipe experiments and a variety of laboratory experiments are planned. This paper will summarize the past base metal complex-cracked pipe experiments, and the current idealized flaw load carrying capacity estimation schemes. In addition, the DM weld complex cracked pipe experimental test matrix will be presented. Finally, plans for using these results to confirm the applicability of idealized flaw stability procedures are discussed.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xuezeng Liu ◽  
Yunlong Sang ◽  
Shuang Ding ◽  
Guiliang You ◽  
Wenxuan Zhu ◽  
...  

Cracks and other diseases may occur in the long-term operation of highway tunnels and reduce the structural load-carrying capacity. Strengthening using carbon fiber reinforced polymer (CFRP) sheets and other materials could extend the service time of the tunnels. However, the process of strengthening tunnels is remarkably different from the process of strengthening aboveground structures because of the secondary load. In order to understand the development of stress and deformation of strengthened tunnels under secondary load, a 1 : 10 scaled model was tested to simulate the tunnel strengthened with CFRP under different damage states. The test results show that CFRP strengthening improved the stiffness of the structure and inhibited the propagation of the existing cracks. The peeling of the CFRP sheets made the strengthened structure quickly lose its load-carrying capacity, causing the instability of the structure. The failure loads of the structures strengthened at different damage states were essentially the same, with an average value of 184% of the original failure load. Nevertheless, the early strengthening helped control the structural deformation. The test results also demonstrate that the bonding strength between the CFRP and the lining is essential for strengthening effectiveness. This study provides a theoretical basis for similar engineering reinforcement designs.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Anandakumar Ramaswamy ◽  
Selvamony Chachithanantham ◽  
Seeni Arumugam

This paper deals with the behaviour of basalt fibre reinforced polymer (BFRP) composites retrofitted RCC piles subjected to axial compression loads. Currently the awareness of using FRP increases rapidly in engineering fields and also among public. Retrofitting becomes vital for aged and damaged concrete structures, piles, and so forth, to improve its load carrying capacity and to extend the service life. The load carrying capacity of piles retrofitted with basalt unidirectional fabric was studied experimentally. 15 nos. of RCC end bearing pile elements were cast with same reinforcement for axial compression experiment. Three piles were used as conventional elements, another 3 piles were used as double BFRP wrapped pile elements, and remaining 9 piles were used as retrofitted piles with BFRP double wrapping after preloaded to 30%, 60%, and 90% of ultimate load of conventional element. The effects of retrofitting of RCC pile elements were observed and a mathematical prediction was developed for calculation of retrofitting strength. The stress vs. strain relationship curve, load vs. deformation curve, preloaded elements strength losses are tabulated and plotted. Besides, crack patterns of conventional elements and tearing BFRP wrapped elements were also observed. The BFRP wrapped elements and retrofitted elements withstand more axial compressive load than the conventional elements.


Sign in / Sign up

Export Citation Format

Share Document