Preparation of Al-Ti-N Master Alloy Grain Refiner for Al

2012 ◽  
Vol 452-453 ◽  
pp. 721-725
Author(s):  
Z.Q. Wang ◽  
C.J. Chen

An Al-Ti-N master alloy was prepared through the addition of AlN and Ti powders into pure Al melt heated in an induction furnace. This master alloy shows a higher grain refinement effect for pure Al than Al-Ti due to the formation of TiN and/or AlxTiyNz particles in the Al matrix. DTA, SEM and XRD results suggest that TiN and/or AlxTiyNz particles start to form at about 970°C during heating the Al-Ti-AlN powder mixture.

2012 ◽  
Vol 562-564 ◽  
pp. 238-241
Author(s):  
Z.Q Wang ◽  
D.L Yang ◽  
Z.X Yang ◽  
H.R Geng

In this paper, two types of Zn-Al-Ti-B-C master alloys were produced by a two-step method and were found to have good refinement effect for Zn-50Al alloy. SEM results show that TiC and TiB2 particles act as the nucleating center of α-Al grains in Zn-50Al alloy. The presence of TiAl3-xZnx phase in the matrix of Zn-Al-Ti-B-C master alloy was found to further enhance the refinement effect. The melt thermal-rate treatment process present good grain refinement effect for Zn-50Al alloy and it was further promoted by the addition of Zn-Al-Ti-B-C master alloy into Zn-Al matrix.


2012 ◽  
Vol 452-453 ◽  
pp. 339-343 ◽  
Author(s):  
Z.Q. Wang ◽  
W.J. Li ◽  
Z.X. Yang ◽  
H.R. Geng ◽  
W.H. Wang ◽  
...  

In this paper, two types of Zn-Al-Ti-C master alloy with different Ti/C ratios were produced throug a two-step method, characterized by XRD and SEM, and their refinement behaviors and mechanism in Zn-50Al alloy were studied. Both of the master alloys remarkably reduced the size of α-Al grains, impeded the dendritic growth and promote the equiaxed growth of α-Al grains in Zn-50wt.%Al alloy. The master alloy containing both TiC and dditional Ti in the Zn-Al matrix was found to have higher refinement ability than that containg only TiC. The refinement effect of both master alloys was greatly enhanced as the solidification temperature of Zn-50Al melt decreases. TiC particles were observed to be located at the center of α-Al grains and act as the nucleating substrate for α-Al. The decrease of melt solidification temperature and the presence of additional Ti atoms in the Zn-50Al melt cause higher melt supercooling, which further elevate the nucleating rate of α-Al grains on TiC particles and promote the equiaxed growth of α-Al grains.


Author(s):  
Jiawei Yang ◽  
Sarina Bao ◽  
Shahid Akhtar ◽  
Yanjun Li

AbstractIn this work, a systematic study on the interactions between aluminum oxide films and TiB2 grain refiner particles and their effect on grain refinement behavior have been conducted. Oxide films were introduced into a commercial purity aluminum melt by adding AA 6061 alloy chips while the grain refiner particles were introduced by adding Al-3T-1B master alloy. Strong sedimentation of TiB2 grain refiner particles was observed in aluminum melt without chip addition during long-time settling. Most of the TiB2 particles were settled and accumulated at the bottom of crucible. In contrast, the sedimentation of TiB2 particles is much less in the melt with the addition of oxide films. A large fraction of TiB2 particles were found to be adhered to the oxide films located at the top part of the crucible, which inhibited the sedimentation of grain refiner particles. TP-1 type tests were also done to study the grain refinement efficiency of Al-3Ti-1B master alloy under different melt cleanliness and settling time. It is found that sedimentation of TiB2 particles greatly reduces the grain refinement efficiency. The introduction of oxide films seems to slightly alleviate the fading effect. This is owing to the strong adherence between the oxide films and TiB2 particles, which leads to a retardation of particle sedimentation.


2007 ◽  
Vol 29-30 ◽  
pp. 111-115 ◽  
Author(s):  
S.A. Kori ◽  
V. Auradi

In the present work binary Al-3Ti and Al-3B master alloys were prepared at different reaction temperatures in an induction furnace by the reaction of halide salts like potassium fluoborate and potassium titanium fluoride with liquid molten Al. The indigenously developed master alloys were used for grain refinement studies of Al-7Si alloy and evaluated for their grain refining ability by CACCA studies. The present results suggest that, the reaction temperature influences the size, size distribution and morphology of the intermetallic (Al3Ti in Al-3Ti, and AlB2/AlB12 in Al-3B) particles present in Al-3Ti and Al-3B master alloys. Grain refinement studies of Al-7Si alloy reveal that, Al-3Ti and Al-3B master alloys prepared at 8000C-60 min. have shown better grain refining efficiency on Al- 7Si alloy when compared to the master alloys prepared at 9000C-60 min and 10000C-60 min respectively. In addition, B-rich Al-3B master alloy shows efficient grain refinement than Ti rich Al- 3Ti master alloy.


2010 ◽  
Vol 654-656 ◽  
pp. 1444-1447 ◽  
Author(s):  
Yoshimi Watanabe ◽  
Kenichi Tabushi ◽  
Hisashi Sato ◽  
Eri Miura-Fujiwara

In this study, grain refinement performance of as-cast Al using machining chip of Al instead of the grain refiner is investigated. At first, the machining chips of pure Al are placed in metallic mold. Then, pure Al melt is inserted into the mold with the machining chips. From the microstructure of the as-cast Al using the machining chips, it is found that this machining chip in mold can induce grain refinement of as-cast Al. The increment of the Al chips enhances the grain refinement of the as-cast Al. Moreover, it is shown that preheating the mold can reduce the pore inside as-cast Al using the machining chips. This grain-refinement effect by the machining chips would come from the enhancement of cooling rate and the role of the nucleation site. Therefore, it is concluded that the machining chips of Al can enhance the grain refinement of as-cast Al.


2012 ◽  
Vol 217-219 ◽  
pp. 377-381 ◽  
Author(s):  
Ying Long Li ◽  
Fu Rong Cao ◽  
Li Jin

The microstructural characters and refining property of Al-Ti-C grain refinement alloy prepared by ultrasound coupling method were studied by analytical means such as SEM, and the reaction synthesis mechanism of Al-Ti-C grain refinement was discussed. Experimental results show that the Al-Ti-C alloy refiner using “thermite reduction method” under high-energy ultrasound was prepared experimentally. Its microstructure character is that master alloy has smaller size of TiC, its quantities are larger and are dispersed. Melt reaction is generally that the source of titanium releases Ti atoms under high temperature of ultrasonic. Ti atoms react with aluminum to generate TiAl3, and react with carbon to generate TiC.


2013 ◽  
Vol 765 ◽  
pp. 311-315 ◽  
Author(s):  
Leandro Bolzoni ◽  
Magdalena Nowak ◽  
N. Hari Babu

The grain refinement practice using Ti based chemical additions is well established for wrought Al alloys, especially in the last few decades. In the case of Al-Si casting alloys the practice of adding grain refiners and the impact on castability is not well established in industries. The main reason is the chemical instability of conventionally known Ti based grain refiner which reacts with silicon forming intermetallic phases. Recently, researchers at Brunel University have identified a novel chemical composition that can refine the grain structure of Al-Si alloys in an effective way. Over the last year, this novel grain refiner in the form of master alloy was developed and tested in various Al-Si cast alloys that are commonly used in industry. Significant grain refinement is obtained when the master alloy is added to the liquid metal prior to casting. Moreover, the grain size of the Al-Si cast alloys is observed to be less sensitive to cooling rate when the master alloy is added. In this work, the influence of addition of the master alloy on microstructural evolution of various Al-Si alloys cast under various cooling rates is presented.


2014 ◽  
Vol 43 (11) ◽  
pp. 2567-2571 ◽  
Author(s):  
Wang Shuncheng ◽  
Gan Chunlei ◽  
Li Xiaohui ◽  
Zheng Kaihong ◽  
Qi Wenjun

2017 ◽  
Vol 898 ◽  
pp. 1231-1235 ◽  
Author(s):  
Shun Cheng Wang ◽  
Ji Lin Li ◽  
Chun Lei Gan ◽  
Kai Hong Zheng

The Al-5Ti-1B, Al-10Ti, Al-4B master alloys and TiB2 powder were applied to refine the pure aluminum, respectively. The effects of the TiAl3 phase, TiB2 particle, and AlB2 phase on the grain size of pure aluminum were compared. The grain refinement mechanism of the Al-5Ti-1B grain refiner was studied. The results showed that the TiAl3 phase was an effective heterogeneous nucleus of the α-Al grain. But the TiAl3 phase in the Al-5Ti-1B grain refiner was not the heterogeneous nucleus of the α-Al grain due to its re-melting in the Al melt. The separate TiB2 particle or AlB2 phase was not the heterogeneous nucleus of the α-Al grain. However, the TiB2 coated by the TiAl3 phase can be the effective heterogeneous nucleus of the α-Al grain. The grain refinement mechanism of the Al-5Ti-1B grain refiner can be summarized as follows: when the Al-5Ti-1B grain refiner is added into the Al melt, the TiAl3 phases are re-melted to release the Ti atoms, while the TiB2 particles are remaining in the Al melt. During the solidification of the Al melt, the Ti atoms are segregating on the surface of TiB2 particles to form the TiAl3 phases. The TiB2 particles coated by the TiAl3 phases then reacts with the Al melt to generate α-Al crystal nucleus.


2019 ◽  
Vol 803 ◽  
pp. 17-21 ◽  
Author(s):  
Thee Chowwanonthapunya ◽  
Chaiyawat Peeratatsuwan

In this study, the structures of Al-5Ti-1B master alloy and its influence on microstructures and mechanical properties of A356 alloy were investigated. The results show that Al-5Ti-1B master alloy consisted of the uniform distribution of lump-like TiB2 and network of TiAl3 on α-Al matrix. The addition of the Al-5Ti-1B master alloy can significantly reduce the grain size of A356 alloy. The mechanical properties of A356 alloy, i.e. ultimate tensile strength, yield strength and elongation were also improved. The use of Al-5Ti-1B master alloy as a grain refiner in the casting process of A356 alloy can effectively enhance the grain refinement and thus improve the mechanical performance of A356 alloy.


Sign in / Sign up

Export Citation Format

Share Document