Stress Relaxation Damage Analysis for High Temperature Bolting

2012 ◽  
Vol 455-456 ◽  
pp. 1429-1433
Author(s):  
Jin Quan Guo ◽  
Xiao Hong Sun ◽  
Hui Chao Shi

The paper analyzes the stress relaxation damage mechanisms of high temperature (HT) bolts of ultra-supercritical steam turbine units. Based on creep damage mechanisms and relaxation characteristics, the paper proposes a life prediction model, and by which to predict relaxation damage life of HT bolting material 1Cr10NiMoW2VNbN. Validation results indicate that the developed model has led to better consistent results with experimental data and thus can be recommended in relaxation life evaluation of HT materials.

Author(s):  
Dengji Zhou ◽  
Meishan Chen ◽  
Huisheng Zhang ◽  
Shilie Weng

Current maintenance, having a great impact on the safety, reliability and economics of gas turbine, becomes the major obstacle of the application of gas turbine in energy field. An effective solution is to process Condition based Maintenance (CBM) thoroughly for gas turbine. Maintenance of high temperature blade, accounting for most of the maintenance cost and time, is the crucial section of gas turbine maintenance. The suggested life of high temperature blade by Original Equipment Manufacturer (OEM) is based on several certain operating conditions, which is used for Time based Maintenance (TBM). Thus, for the requirement of gas turbine CBM, a damage evaluation model is demanded to estimate the life consumption in real time. A physics-based model is built, consisting of thermodynamic performance simulation model, mechanical stress estimation model, thermal estimation model, creep damage analysis model and fatigue damage analysis model. Unmeasured parameters are simulated by the thermodynamic performance simulation model, as the input of the mechanical stress estimation model and the thermal estimation model. Then the stress and temperature distribution of blades will be got as the input of the creep damage analysis model and the fatigue damage analysis model. The real-time damage of blades will be evaluated based on the creep and fatigue analysis results. To validate this physics-based model, it is used to calculate the lifes of high temperature blade under several certain operating conditions. And the results are compared to the suggestion value of OEM. An application case is designed to evaluate the application effect of this model. The result shows that the relative error of this model is less than 10.4% in selected cases. And it can cut overhaul costs and increase the availability of gas turbine significantly. Therefore, the physical-based damage evaluation model proposed in this paper, is found to be a useful tool to tracing the real-time life consumption of high temperature blade, to support the implementation of CBM for gas turbine, and to guarantee the reliability of gas turbine with lowest maintenance costs.


2016 ◽  
Vol 853 ◽  
pp. 67-71
Author(s):  
Yu Han ◽  
Ke Sheng Wang

With the purpose of long-cycle safe operation of cold stretched austenitic stainless steel pressure vessels so as to achieve unification of economy and safety, prediction of fatigue life of S31603 austenitic stainless steel at high temperature is systematic studied. Based on the Hull-Rimmer cavity theory, a fatigue life prediction model applicable to stress controlled is developed. Fatigue test is carried out on the solution annealed and cold stretched S31603 steel at high temperature and corresponding test data is obtained. The fatigue life of the solution annealed and cold stretched materials is predicted by the model and the prediction results are in good agreement with the experimental results. On this basis, the life prediction model coupled with the strain level of cold stretching is further established. Compared with the test data, the prediction results is found to be very satisfactory with an error band less than ±1.5 times. The fatigue life prediction model suitable for stress control at high temperature is simple in form and has a clear and obvious physical significance which points out a new way to predict fatigue life of metal materials.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 109
Author(s):  
Yan Song ◽  
Mengyu Chai ◽  
Zelin Han ◽  
Pan Liu

The 2.25Cr1Mo0.25V steel is a vanadium-modified 2.25Cr1Mo steel and is being widely used in the manufacture of heavy-wall hydrogenation reactors in petrochemical plants. However, the harsh service environment requires a thorough understanding of high-temperature tensile and creep behaviors of 2.25Cr1Mo0.25V steel and its weld for ensuring the safety and reliability of hydrogenation reactors. In this work, the high-temperature tensile and creep behaviors of base metal (BM) and weld metal (WM) in a 2.25Cr1Mo0.25V steel weldment used for a hydrogenation reactor were studied experimentally, paying special attention to its service temperature range of 350–500 °C. The uniaxial tensile tests under different temperatures show that the WM has higher strength and lower ductility than those of BM, due to the finer grain size in the WM. At the same time, the short-term creep tests at 550 °C reveal that the WM has a higher creep resistance than that of BM. Moreover, the creep damage mechanisms were clarified by observing the fracture surface and microstructures of crept specimens with the aid of scanning electron microscopy (SEM). The results showed that the creep damage mechanisms of both BM and WM are the initiation and growth of creep cavities at the second phase particles. Results from this work indicate that the mismatch in the high-temperature tensile strength, ductility, and creep deformation rate in 2.25Cr1Mo0.25V steel weldment needs to be considered for the design and integrity assessment of hydrogenation reactors.


2013 ◽  
Vol 860-863 ◽  
pp. 972-977 ◽  
Author(s):  
De Xian Wang ◽  
Dong Mei Ji ◽  
Jian Xing Ren

Taking the P92 steel as the object,Creep-Fatigue (CF) tests of P92 steel at 873K under stress-controlled were carried out with GWT2504 equipment to investigate the CF life prediction. The life prediction model based on Applied Mechanical Work Density (AMWD) was developed in this study,and introduce the effective coefficient ƞ to modify the former. To verify the prediction capability of the AMWD-based and the modified model, comparisons of the models predicted lives with the experimental data of CF tests on P92 steel at 873K were made, it is found out that the AMWD-based model predictions for CF are in agreement with the experimental lives with the factors of 0.9013 and 1.0600, which verifies the model has a good predictability, and the Modified model with the factors of 0.9558 and 1.0469.


2016 ◽  
pp. 745-756 ◽  
Author(s):  
L. Mataveli Suave ◽  
L. Mataveli Suave ◽  
J. Cormier ◽  
P. Villechaise ◽  
D. Bertheau ◽  
...  

2013 ◽  
Vol 136 (1) ◽  
Author(s):  
J. Q. Guo ◽  
X. T. Zheng ◽  
Y. Zhang ◽  
H. C. Shi ◽  
W. Z. Meng

Two stress relaxation constitutive models have been developed to predict the stress relaxation behavior for high-temperature bolting according to continuum damage mechanics, Kachanov–Robatnov (K–R), and Othman–Hayhurst (O–H) creep constitutive equations as well as stress relaxation strain equations. To validate the effectiveness of constitutive equations, the predicted results were compared with the experimental data of uniaxial isothermal stress relaxation tests using 1Cr10NiMoW2VNbN steel. The results show that the results obtained by the stress relaxation constitutive model based on the K–R creep equation overestimates the stress relaxation behavior, while the model deduced by the O–H creep equation is more in agreement with the experimental data. Moreover, the stress relaxation damage predicted increases with the increment of initial stress significantly. These indicate that the new models can predict the stress relaxation behavior of high-temperature bolting well.


Author(s):  
Zhichao Fan ◽  
Xuedong Chen ◽  
Heng Jiang ◽  
Jie Dong

Cyclic creeps can bring to additional damage, resulting in shorter fatigue lives, so the effects of fatigue damage and cyclic creep damage should be taken into account in the life prediction. In this case, the mean strain rate model based on ductility exhaustion theory can be adopted. An engineering structure inevitably has some stress concentration area. As to this situation, by high temperature low cycle fatigue tests with different notch sizes, cyclic creep behavior is investigated and compared with that of smooth specimens in this paper. The results indicate that, due to existence of notch, the cyclic creep deformation is restricted within a little range around notch and cannot spread widely, so the fatigue strength of notch specimens increases. Based on the ductility dissipation theory and effective stress concept of continuum damage mechanism (CDM), the mean displacement rate at half life is acted as control parameter, and a high temperature multi-axial fatigue life prediction method is proposed in this paper. The prediction results show that all test data are within ±2.0 error factor, which is better than that of axial maximum stress method. This method has simple form and fewer constants, can be used to predict high temperature stress-controlled fatigue life whatever smooth or notch specimens.


Sign in / Sign up

Export Citation Format

Share Document