Study on Phosphorus and Bacterial Regrowth in Drinking Water

2012 ◽  
Vol 461 ◽  
pp. 466-469
Author(s):  
Deng Ling Jiang ◽  
Yu Min Zhang ◽  
Ning Zheng

Phosphorus limitation on bacterial regrowth was studied in source water, water treatment process and water distribution system of J Water Supply Plant in T city, by modified AOC method and MAP analysis. Based on the study, the follows can be concluded: ① MAP(Microbially Available Phosphorus) concentration was higher in source water and water treatment process, which was 5~38µg PO43--P/L. However in water distribution, MAP concentration was lower, which was less than 5µg PO43--P/L. ②Coagulation and sedimentation can remove MAP efficiently. 31%~68% of MAP can be removed in these process. ③ In source water and water treatment process, there was no evident difference between AOCpotential, AOCp and AOCnative. So assimilable organic carbon (AOC) was the most important factor of bacterial regrowth. In water distribution system, the concentration of AOCpotential and AOCp were 2~8.7 times of the concentration of AOCnative. So phosphorus limited bacterial regrowth.

Author(s):  
I-Chieh Chien ◽  
Sheng-Pei Wu ◽  
Hsien-Chun Ke ◽  
Shang-Lien Lo ◽  
Hsin-hsin Tung

High cyanobacteria-derived dissolved organic carbon (DOC) in source water can cause drinking water quality to deteriorate, producing bad taste, odor, toxins, and possibly elevated levels of disinfection byproduct (DBP) precursors. Conventional water treatment processes do not effectively remove algal organic substances. In this study, rapid-sand-filtration effluent from a water treatment plant on Kinmen Island, where serious cyanobacterial blooms occurred, was used to evaluate the DOC- and DBP-removal efficiency of ozonation and/or biofiltration. To simulate a small-scale water distribution system following water treatment, 24 h simulated distribution system (SDS) tests were conducted. The following DBPs were analyzed: trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), and trichloronitromethane (TCNM). Applying biological activated-carbon filtration (BAC) on its own achieved the greatest reduction in SDS-DBPs. Ozonation alone caused adverse effects by promoting THM, HAA, and TCNM formation. Ozonation and BAC filtration yielded better DOC removal (51%) than BAC filtration alone (41%). Considering the cost of ozonation, we suggest that when treating high cyanobacterial organic matter in water destined for a small-scale water distribution system, BAC biofiltration alone could be an efficient, economical option for reducing DBP precursors. If DOC removal needs to be improved, preceding ozonation could be incorporated.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6221
Author(s):  
Jedrzej Bylka ◽  
Tomasz Mróz

The water supply system is one of the most important elements in a city. Currently, many cities struggle with a water deficit problem. Water is a commonly available resource and constitutes the majority of land cover; however, its quality, in many cases, makes it impossible to use as drinking water. To treat and distribute water, it is necessary to supply a certain amount of energy to the system. An important goal of water utility operators is to assess the energy efficiency of the processes and components. Energy assessments are usually limited to the calculation of energy dissipation (sometimes called “energy loss”). From a physical point of view, the formulation of “energy loss” is incorrect; energy in water transport systems is not consumed but only transformed (dissipated) into other, less usable forms. In the water supply process, the quality of energy—exergy (ability to convert into another form)—is consumed; hence, a new evaluation approach is needed. The motivation for this study was the fact that there are no tools for exergy evaluation of water distribution systems. A model of the exergy balances for a water distribution system was proposed, which was tested for the selected case studies of a water supply system and a water treatment station. The tool developed allows us to identify the places with the highest exergy destructions. In the analysed case studies, the highest exergy destruction results from excess pressure (3939 kWh in a water supply system and 1082 kWh in a water treatment plant). The exergy analysis is more accurate for assessing the system compared to the commonly used energy-based methods. The result can be used for assessing and planning water supply system modernisation.


2009 ◽  
Vol 9 (4) ◽  
pp. 413-421
Author(s):  
C. Beaulieu ◽  
M. J. Rodriguez ◽  
J.-B. Sérodes

Little information is available on the evolution of remaining organic matter (ROM) in a water distribution system (WDS) and its impact on the generation of disinfection by-products (DBPs). This research involves the characterization, through sample fractionation processes and experimental chlorination tests, of the reactivity of DBP precursors occurring within a WDS. The study is based on samples collected in various locations of a WDS during a complete year. For each sample, six fractions were generated to determine their potential for formation of trihalomethanes (THMs) and haloacetic acids (HAAs). Fractionation processes on ROM demonstrated that the spatial behavior of precursors for THMs differs from that for precursors of HAAs. In addition, experimental chlorination tests showed that the reactivity of the investigated fractions, in terms of DBP formation potential (DBPfp), was different from each other according to location in the WDS. DBPfp for the studied fractions changed drastically during water treatment. However, changes of DBPfp for fractions were relatively low between the beginning and the extremity of the distribution system. Since the results of this research confirm that the ability to produce DBPs is related to the nature of the fractions, they could be useful to evaluate the impact of re-chlorination on DBP formation in a WDS.


Cybersecurity ◽  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Venkata Reddy Palleti ◽  
Sridhar Adepu ◽  
Vishrut Kumar Mishra ◽  
Aditya Mathur

AbstractModern critical infrastructure, such as a water treatment plant, water distribution system, and power grid, are representative of Cyber Physical Systems (CPSs) in which the physical processes are monitored and controlled in real time. One source of complexity in such systems is due to the intra-system interactions and inter-dependencies. Consequently, these systems are a potential target for attackers. When one or more of these infrastructure are attacked, the connected systems may also be affected due to potential cascading effects. In this paper, we report a study to investigate the cascading effects of cyber-attacks on two interdependent critical infrastructure namely, a Secure water treatment plant (SWaT) and a Water Distribution System (WADI).


2012 ◽  
Vol 10 (2) ◽  
pp. 324-336 ◽  
Author(s):  
Walter Q. Betancourt ◽  
Kristina D. Mena

Three drinking water treatment plants (DWTPs) differing in source water and treatment capacity were investigated for the potential passage of waterborne protozoan (oo)cysts through conventional processing. DWTP I (15,000 L/s), DWTP II (7,500 L/s) and DWTP III (4,300 L/s) provide drinking water for approximately 2.7 million inhabitants of the Metropolitan District of Caracas (Venezuela). The US Environmental Protection Agency Method 1623 for detection of Cryptosporidium and Giardia was used to analyze raw water and finished drinking water samples collected from the three plants. (Oo)cyst recovery efficiencies varied between 23 and 84%. The concentration of confirmed (oo)cysts detected in raw water samples ranged between 1 and 100 per 100 L. (Oo)cyst levels in finished water samples ranged from 2 to 25 per 100 L. These data indicated that the conventional treatment process to produce finished water at two filtration plants was not effective in preventing the passage of protozoan (oo)cysts. Monitoring strategies that include multiple microbial indicators and waterborne pathogens are strongly recommended for accurate source water characterization and for verification of the effectiveness of treatment process barriers to microbial breakthrough in the finished water.


Sign in / Sign up

Export Citation Format

Share Document