scholarly journals Experimental Study of the Compressive Performance of Life Jacket Use Polyurethane Foam for Blast Wave Protection

2012 ◽  
Vol 463-464 ◽  
pp. 457-462
Author(s):  
Mao Hui Li ◽  
Chun Hua Bai ◽  
Mei Wu Shi ◽  
Yan Peng Wei ◽  
Hong Zhou ◽  
...  

Underwater blast injury is a common war injury during combat around islands or fighting for beachhead, and is also ordinary in underwater engineering construction blast. Adding an extra underwater blast wave protection layer and Integration with life jacket is a reasonable protection measure. Four different low mass density closed cell polyurethane foams used in life jacket have been tested by quasi-static material testing machine, and the dynamic mechanical behavior at strain rates of 10-3~10-1s-1 has been analyzed. The yield strength has been tested with Split Hopkinson Pressure Bar. Experimental results show that the compressive performance of the polyurethane foam is sensitive to the strain rates. The polyurethane foams’ yield strength shows rising trend along with strain rates increase. Under the condition of the plateau yield strength below human’s allowable pressure, the energy absorption performance of the polyurethane foams has been analyzed and in contrast.

Author(s):  
Kebin Zhang ◽  
Wenbin Li ◽  
Ping Song ◽  
Changfang Zhao ◽  
Kewin Zhang

Abstract Sn-58Bi alloy is a strain-rate-sensitive material. To study the mechanical properties of Sn-58Bi alloy, an MTS universal testing machine and split-Hopkinson pressure bar were used to conduct quasi-static and dynamic testing on Sn-58Bi alloy, obtaining the stress-strain curve of Sn-58Bi alloy at the strain rate of 0.001–6316 s−1. By comparing the tensile and compressive stress–strain curves of Sn-58Bi alloy under quasi-static conditions, it is found that Sn-58Bi alloy is brittle, with its tensile yield strength lower than its compressive yield strength. By comparing the compressive stress–strain curves of Sn-58Bi alloy at different strain rates, it is found that the yield strength of Sn-58Bi alloy increases with increasing strain rate, and a strain-hardening phenomenon is manifested at high strain rate. By revising the Johnson–Cook constitutive model, the constitutive model of Sn-58Bi alloy at different strain rates was established, with the calculated results of the model in good agreement with the experimental results.


2019 ◽  
Vol 812 ◽  
pp. 38-44
Author(s):  
Shuai Chen ◽  
Wen Bin Li ◽  
Xiao Ming Wang ◽  
Wen Jin Yao

This work compares the pure copper (T2 copper)’s stress-strain relationship at different strain rates in the uni-axial tension test and Split Hopkinson Pressure Bar (SHPB) test. Small samples were utilized in the high strain rate SHPB test in which the accuracy was modified by numerical simulation. The experimental results showed that the T2 copper’s yield strength at high strain rates largely outweighed the quasi static yield strength. The flow stress in the stress-strain curves at different strain rates appeared to be divergent and increased with the increase in strain rates, showing great strain strengthening and strain rate hardening effects. Metallographic observation showed that the microstructure of T2 copper changed from equiaxed grains to twins and the interaction between the dislocation slip zone grain boundary and twins promoted the super plasticity distortion in T2 copper.


2015 ◽  
Vol 782 ◽  
pp. 130-136 ◽  
Author(s):  
Ping Zhou ◽  
Wei Guo Guo ◽  
Hai Hui Wu

To explore the thermo-mechanical response of H96 brass alloy, the quasi-static (universal-testing machine) and dynamic (the split Hopkinson pressure bar apparatus) uniaxial compression experiments have been performed under the temperatures from 293 K to 873 K and the strain rates from 0.001 s-1 to 6000 s-1, and the strains over 60% are obtained. Results show that, H96 brass alloy has strong strain hardening behavior, and it becomes weaker with the increasing temperature. In addition, this alloy is sensitive to strain rates; and, it has temperature sensitivity, the dynamic strain aging occurs at the temperature of 473 K and a quasi-static strain rate of 0.001 s-1. Based on the thermal activation dislocation mechanism, paralleled with the experimental results, a plastic flow constitutive model with the physical conception is developed. The model is suitable to predict the plastic flow stress at different temperatures and strain rates. According to comparing results, the model predictions are in good agreement with the experimental results.


2018 ◽  
Vol 1145 ◽  
pp. 100-105
Author(s):  
Ivan V. Smirnov ◽  
Alexander Y. Konstantinov

The nanocrystalline (NC) and ultrafine-grained (UFG) structures of metallic materials can lead to their extraordinary high strength. However, most of the papers on this topic consider deformation parameters of NC and UFG materials only for the case of quasi-static tensile tests. Characteristics of dynamic strength and fracture of such materials remain unexplored. This paper presents a study of the mechanical behavior of pure titanium Grade 4 with a coarse-grained (CG) and UFG structure under uniaxial compression with different strain rates. The UFG structure was provided using the method of equal-channel angular pressing. The dynamic compression was carried out on a setup with the Split-Hopkinson pressure bar. It is found that in the observed range of strain rates 10–3-3×103 s–1, the yield stress of the CG titanium increases by 20%, and does not exceed the yield stress of the UFG titanium. However, the yield stress of the UFG titanium remains close to a quasi-static value. It is shown that these strain-rate dependencies of the yield strength can be predicted by the incubation time approach. The calculated curves show that at strain rates above 104 s–1 the yield stress of the CG titanium becomes higher than the yield strength of the UFG titanium.


2015 ◽  
Vol 782 ◽  
pp. 124-129
Author(s):  
Wen Wen Du ◽  
Qian Wang ◽  
Lin Wang ◽  
Ding Wang

The high strength steel which was subjected with isothermal heat treatment at three different temperatures, namely 330°C, 350°Cand 380°C after different quenching temperature namely 880°C and 900°C,was investigated in this paper. The quasi-static and dynamic mechanical properties of new high strength steel was tested by universal material testing machine and Split Hopkinson Pressure Bar (SHPB). Experimental results have showed that the yield strength and tensile strength of the steel reach 1100MPa and 1400MPa respectively. Hardness, yield strength and toughness are found to decrease with the consequently increasing of isothermal temperature under the same quenching temperature. The compression properties of the steel under quenching temperature of 880°C are higher than that of 900°C with the same isothermal temperature. It can be found that the steel which is subjected with isothermal heat treatment show strain rate sensitivity under high velocity impact. When isothermal temperature is set 380°C, the steel exhibits the most obvious strain rate hardening effect.


2006 ◽  
Vol 306-308 ◽  
pp. 905-910 ◽  
Author(s):  
Zhi Hua Wang ◽  
Hong Wei Ma ◽  
Long Mao Zhao ◽  
Gui Tong Yang

The compressive deformation behavior of open-cell aluminum foams with different densities and morphologies was assessed under quasi-static and dynamic loading conditions. High strain rate experiments were conducted using a split Hopkinson pressure bar technique at strain rates ranging from 500 to 1 2000 − s . The experimental results shown that the compressive stress-strain curves of aluminum foams also have the “ three regions” character appeared in general foam materials, namely elastic region, collapse region and densification regions. It is found that density is the primary variable characterizing the modulus and yield strength of foams and the cell appears to have a negligible effect on the strength of foams. It also is found that yield strength and energy absorption is almost insensitive to strain rate and deformation is spatially uniform for the open-celled aluminum foams, over a wide range of strain rates.


2010 ◽  
Vol 129-131 ◽  
pp. 988-992
Author(s):  
Bo Wang ◽  
Tong Chen ◽  
Xue Feng Shu

In this paper, dynamic properties of EMC were studied at different temperatures and different strain rates. Firstly EMC was investigated by quasi-static tests. Secondly a series of dynamic compressive experiments of EMC were conducted using the Split Hopkinson Pressure Bar (SHPB) at sectional height of strain rates. Thirdly EMC constants in ZWT model were determined from experiments. Corresponding measurements were conducted at temperatures ranging from 20°C to 160°C. The results indicate that the yield strength and flow stress of EMC increase remarkably with the increase of strain rate and it is shows that the assembled curve is fit good accordance with actual the experimental curve. However, the yield strength of EMC is a little change with the increase of temperature which is ranging from 20°C to 160°C.


2021 ◽  
Vol 250 ◽  
pp. 02005
Author(s):  
Rafael Santiago ◽  
Sarah Almahri ◽  
Dong-Wook Lee ◽  
Haleimah Alabdouli ◽  
Omar Banabila ◽  
...  

The advent of Powder Bed Fusion (PBF) techniques allows the additive manufacturing of complex structures, as Triply Periodic Minimal Surfaces (TPMS) lattices, which exhibit promising characteristics for impact applications, such as lightweight and high-energy absorption. Thus, this work aims to develop a numerical model of TPMS structures to investigate the mechanical response of such structures when subjected to impact loadings. To fulfill this task, stainless steel samples made by PBF technique were mechanically characterized at different strain rates using a universal testing machine and Split Hopkinson Pressure Bar. The testing campaign also explored the compressive and tensile material response, with the strain field being monitored by Digital Image Correlation technique. It was noted that the material exhibits a similar elasto-plastic response on both tension and compression and an evident strain rate hardening when the material is loaded from static (0.001 s-1) to dynamic strain rates (4000 s-1). Constitutive parameters were then obtained and implemented in an explicit finite element model developed through Abaqus CAE. Samples of TMPS lattices were manufactured and tested at different loading velocities, which showed that the FE model developed can be used to predict the impact response of TMPS lattices.


2012 ◽  
Vol 706-709 ◽  
pp. 799-804 ◽  
Author(s):  
Takashi Yokoyama

The impact compressive failure behavior of a unidirectional T700/2521 carbon/epoxy laminated composite in three principal material directions or fiber (1-), in-plane transverse (2-) and through-thickness (3-) directions is investigated on the conventional split Hopkinson pressure bar (SHPB). Cubic and rectangular block specimens with identical square cross section are machined from an about 10 mm thick composite laminate. The uniaxial compressive stress-strain curves up to failure at quasi-static and intermediate strain rates are measured on an Instron testing machine. It is shown that the ultimate compressive strength and strain exhibit no strain-rate effect in the 1-direction, but a slight strain-rate effect in the 2-and 3-direction over a range of strain rates from10-3to 103/s.


2013 ◽  
Vol 58 (4) ◽  
pp. 1105-1110 ◽  
Author(s):  
W. Moćko ◽  
Z.L. Kowalewski

Abstract In this paper, a new method for assessing the accuracy of a constitutive model is proposed. The method uses perforation test done by drop weight tower. The assessment is carried out by comparison of striker velocity curve obtained using experiment and FEM simulation. In order to validate proposed method the various constitutive equations were applied i.e. Johnson-Cook, Zerilli-Armstrong and the extended Rusinek-Klepaczko to model mechanical behaviour of X4CrMnN16-12 austenitic steel. The steel was characterized at wide range of strain and strain rates using servo-hydraulic testing machine and split Hopkinson pressure bar. The relative error calculated as a difference between measured and constitutive model based stress-strain curve was applied as a reference data (classic approach). Subsequently, it was compared with relative error determined on the basis of experimental and FEM calculated striker velocity (new approach). A good correlation between classic and a new method was found. Moreover, a new method of error assessment enables to validate constitutive equation in a wide range of strain rates and temperatures on the basis of a single experiment.


Sign in / Sign up

Export Citation Format

Share Document