Static Corrosion Behavior of Refractory Lining Materials for Magnesium Electrolytic Cell

2012 ◽  
Vol 476-478 ◽  
pp. 1054-1057
Author(s):  
Shi Dong Wang ◽  
Quan Li ◽  
Zhi Jian Wu

The corrosion behavior of six refractory materials in molten salts for magnesium electrolysis was studied. Experimental results showed that porous clay brick was the most suitable lining material for magnesium electrolytic cell.

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2040
Author(s):  
Munish Kumar ◽  
Ravi Kant ◽  
Suresh Chand ◽  
Ujjwal Prakash ◽  
Shankar Sehgal ◽  
...  

Corrosion behavior of FeAl-based alloys containing carbon produced through arc melting in argon atmosphere has been studied at 500 °C to 700 °C. The samples were tested in the aggressive environment of molten salts (80%V2O5/20%Na2SO4). The corrosion behavior was observed by weight change method and the layer products formed were examined by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The different phase components were observed in the surface layer after the test in Fe-22Al alloy. A protective Al2O3 layer was confirmed for Fe-22Al alloy containing carbon only. However, an additional TiO layer was also observed in Fe-22Al alloy containing carbon with Ti addition. The microstructural and XRD examinations revealed that this additional TiO layer protects better against penetration of corrosive media. The corrosion resistance behavior of FeAl-based alloys were addressed on the basis of microstructural evidence.


Coatings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 351 ◽  
Author(s):  
Hui Liu ◽  
Jin Cai ◽  
Jihong Zhu

BaLa2Ti3O10 ceramics for thermal barrier coating (TBC) applications were fabricated, and exposed to V2O5 and Na2SO4 + V2O5 molten salts at 900 °C to investigate the hot corrosion behavior. After 4 h corrosion tests, the main reaction products resulting from V2O5 salt corrosion were LaVO4, TiO2, and Ba3V4O13, whereas those due to Na2SO4 + V2O5 corrosion consisted of LaVO4, TiO2, BaSO4 and some Ba3V4O13. The structures of reaction layers on the surfaces depended on the corrosion medium. In V2O5 salt, the layer was dense and had a thickness of 8–10 μm. While in Na2SO4 + V2O5 salt, it had a ~15 μm porous structure and a dense, thin band at the bottom. Beneath the dense layer or the band, no obvious molten salt was found. The mechanisms by which the reaction layer forms were discussed.


CORROSION ◽  
10.5006/2813 ◽  
2020 ◽  
Vol 76 (7) ◽  
pp. 654-665 ◽  
Author(s):  
Yang Zhao ◽  
Limin Chang ◽  
Tao Zhang ◽  
Junfeng Xie ◽  
Yan Chen ◽  
...  

Effect of flow velocity on the passive film and pitting corrosion behavior of UNS S41426 stainless steel (SS) under the extreme oilfield environment was investigated using different techniques such as microscopy, nanoindentation, and electrochemical techniques. The experimental results show that the corrosion rate of UNS S41426 SS increased with velocity. The increase in flow velocity decreased the thickness and content of amorphous Cr(OH)3 (s) in the film. This in turn increased the density of phase boundary, resulting in a higher defect density. Thus, the UNS S41426 SS film became susceptible to breaking. Furthermore, the pitting had a higher susceptibility to grow to a larger size both in the vertical and horizontal directions with the increase in flow velocity.


2019 ◽  
Vol 817 ◽  
pp. 514-519 ◽  
Author(s):  
Francesco Finelli ◽  
Angelo Di Tommaso ◽  
Cristina Gentilini

The paper reports the results of a numerical simulation performed to study the experimental pull-out behavior of twisted steel connectors inserted in fired-clay brick units. The experimental results obtained in a previous campaign are used to calibrate a 3D refined numerical model developed by means of the finite element program Abaqus. The numerical model is tuned to accurately reproduce the experimental results in terms of loads and bar displacements.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
G. Salinas ◽  
J. G. Gonzalez-Rodriguez ◽  
J. Porcayo-Calderon ◽  
V. M. Salinas-Bravo ◽  
M. A. Espinoza-Medina

The hot corrosion behavior of Fe40Al intermetallic alloyed with Ag, Cu, Li, and Ni (1–5 at.%) in NaCl-KCl (1 : 1 M) at 670°C, typical of waste gasification environments, has been evaluated by using polarization curves and weight loss techniques and compared with a 304-type stainless steel. Both gravimetric and electrochemical techniques showed that all different Fe40Al-base alloys have a much higher corrosion resistance than that for stainless steel. Among the different Fe40Al-based alloys, the corrosion rate was very similar among each other, but it was evident that the addition of Li decreased their corrosion rate whereas all the other elements increased it. Results have been explained in terms of the formation and stability of an external, protective Al2O3layer.


Sign in / Sign up

Export Citation Format

Share Document