Study on Division of Natural Bamboo Fibers by Steam Explosion

2012 ◽  
Vol 476-478 ◽  
pp. 1873-1876
Author(s):  
Yuan Song Zhang ◽  
Ji Xiang Xie ◽  
Yu Chun Jiang

In order to improve the effect of natural bamboo fibers degumming, the factors affecting the natural bamboo fibers separation effect in general alkali boiling conditions after the process of steam explosion were researched. The results showed that the degumming rate increased with the rise of steam explosion pressure and the pressure maintaining time. As the steam explosion was stronger, the degree of the fibers separation and softness were better. After steam explosion and alkali boiling united degumming method, the hemicelluloses and lignin content of the fibers decreased by 41.61% and 31.94%, while the cellulose content rose to 63.59%. The effect of steam explosion and alkali boiling united degumming method was better than single alkali boiling or steam explosion. The morphology of fibers became smooth and the fiber’s diameter reduced obviously.

2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Jieyu Wu ◽  
Tuhua Zhong ◽  
Wenfu Zhang ◽  
Jiangjing Shi ◽  
Benhua Fei ◽  
...  

AbstractThe effects of heat treatment at various temperatures on mechanically separated bamboo fibers and parenchyma cells were examined in terms of color, microstructure, chemical composition, crystallinity, and thermal properties. The heat-treated parenchyma cells and fibers were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), chemical composition analysis, and thermogravimetric analysis (TGA). The results revealed that the colors of bamboo fibers and parenchyma cells were darkened as treatment temperature increased. The microstructure of the treated fibers and parenchyma cells slightly changed, yet the shape of starch granules in parenchyma cells markedly altered at a temperature of above 160 °C. The chemical compositions varied depending on the heat treatment temperature. When treated at 220 °C, the cellulose content was almost unchanged in fibers but increased by 15% in parenchyma cells; the hemicellulose content decreased and the lignin content increased regardless of fibers and parenchyma cells. The cellulose crystal structure was nearly unaffected by heat treatment, but the cellulose crystallinity of fibers changed more pronouncedly than that of parenchyma cells. The thermal stability of parenchyma cells after heat treatment was affected more substantially compared to fibers.


BioResources ◽  
2016 ◽  
Vol 11 (3) ◽  
pp. 6854-6866 ◽  
Author(s):  
Minghua Li ◽  
Guangting Han ◽  
Yan Song ◽  
Wei Jiang ◽  
Yuanming Zhang

Cellulosic fibers from the bast of Pueraria lobata (P. lobata) vine were separated using a “green” and efficient method that combined steam explosion (SE) and a laccase mediator system (LMS). The chemical components, structure, and thermal alterations in the fibers were evaluated. The SE performed at 180 °C for 10 min did not change the chemical composition of P. lobata; however, SE did alter the fiber structure and rendered its surface more accessible to the laccase enzyme. Treated and untreated samples were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), thermogravimetric analysis (TGA), and chemical methods. The cellulose content of the processed fibers was approximately 68.2%, and the lignin content was 11.8%, which was much lower than the 22.98% lignin content of the raw material. The cellulose fibers exhibited higher cellulose crystallinity and thermal stability compared with the untreated samples. This combined treatment approach may be useful for the isolation of cellulose fibers for composites, textiles, and other industrial applications.


2012 ◽  
Vol 42 (1) ◽  
pp. 134-140 ◽  
Author(s):  
Miho Kojima ◽  
Hiroyuki Yamamoto ◽  
Koichiro Saegusa ◽  
Fabio Minoru Yamaji ◽  
Masato Yoshida ◽  
...  

The key to using planted Eucalyptus as timber lies in controlling the characteristic high tensile growth stress that often causes serious processing defects in sawn logs and lumber. In the present study, we investigated variations in the longitudinal released strain (RS) of surface growth stress in stems of Eucalyptus grandis W. Hill ex Maiden planted in a wide range of latitudes in Brazil and established relationships between RS measurements and anatomical and chemical factors. Cellulose and lignin content, RS, and the microfibril angle (MFA) of the middle layer of the secondary wall (S2 layer) differed among latitudes. The increase in cellulose content and decrease in MFA were correlated with the contractive value of RS, which explained the higher tensile growth stress in stems from high-latitude plantations where higher cellulose content and lower MFA were observed. To reduce processing defects due to tensile growth stress, the factors controlling MFA values and cellulose content must be identified.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3734-3745
Author(s):  
Wenhua Gao ◽  
Luyao Huang ◽  
Zhihui Lei ◽  
Zhiwei Wang

The aim of this study was to investigate a potential biorefinery process to realize the high utilization of Camellia oleifera shell (COS), which is an agricultural by-product mainly composed of cellulose, hemicellulose, and lignin. Before treatment by steam explosion, the COS was impregnated with water, 3.0 wt% NaOH solution, or 3.0 wt% H2SO4 solution. The morphological structure and chemical composition of the steam-exploded COS pulp were investigated. The results indicated that the impregnation treatments increased the cellulose content of the steam-exploded COS pulp and decreased the hemicellulose and lignin content. The morphology of steam-exploded COS fiber was short, coarse and stiff. Hydrophobic and colorful handsheets were fabricated by mixing proportional bleached softwood fiber. This study demonstrated that COS was a potential material for the papermaking industry, and the combination of water impregnation and steam explosion treatment for COS was a good pulp process.


2018 ◽  
Vol 6 (02) ◽  
pp. 105-120
Author(s):  
Muhammad Rouf Suprayogi ◽  
Annisa Mufida ◽  
Edwin Azwar

In composite science, desirable materials that are lighter but have the power and quality that can match or even exceed the material that has been there before. The purpose of this study was to investigate the effect of cellulose fiber addition from banana gedebok to tensile strength, compressive strength and damping of concrete composite sound. To achieve this objective, mixing of cellulose fibers with K-275 quality concrete mix with variation of 0% and 5% substitution in which the cellulose is varied in powder and wicker form. Delignification of lignin content from banana gedebok was done by soaking and drying method without any variation and yielding powder having cellulose content of 13,0388%, hemicellulose 18,2796% and lignin 0,6684%. This study produces concrete composites that have a tensile strength and a compressive strength lower than that of normal concrete. Normally reinforced concrete tensile strength value 94.5 kg / cm2, 71.4 kg / cm2 cellulose powder concrete and 90.3 kg / cm2 cellulose woven concrete. Normal concrete compressive strength value 334,22 kg / cm2, cellulose powder concrete 215,7 kg / cm2, and cellulose webbing concrete 157,98 kg / cm2. As for the power damping sound of cellulose webbing concrete has the highest damping power compared to other concrete with the absorbed sound intensity that is 52-68 dB


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi244-vi244
Author(s):  
Santanu Bora ◽  
Ashish Suri

Abstract BACKGROUND Cushing disease (CD) comprises a spectrum of clinical manifestations secondary to hypercortisolism due to ACTH-secreting pituitary adenoma. Transsphenoidal adenomectomy remains the standard treatment. Because of the significant rate of recurrence or persistence of CD, it is of interest to determine factors that may correlate with long-term outcomes following surgical intervention. OBJECTIVE The objective of our study is to determine the remission rate after surgery with special emphasis on factors affecting remission. METHODS Data of all patients undergoing surgery for CD from 2009 to 2017 was analyzed retrospectively. Transphenoidal resection was the preferred treatment with a recent trend in favor of endonasal endoscopic skull base approach. Post-operative cortisol level of < 2 μg/dL was taken as remission and value between 2 and 5 μg/dL as possible remission. RESULTS 104 patients operated primarily for CD were included for analysis. 47 patients underwent microscopic surgery, 55 endoscopic surgery and two were operated trans-cranially. Remission was achieved in 76.47% of patients. In univariate analysis, factors significantly associated with remission were (1) type of surgery (p=0.01); endoscopy (88.23% remission) better than microscopy (56.6% remission) (2) postoperative day-1 morning cortisol (p=0.004) and; (3) postoperative day-1 morning ACTH (p=0.015). In multivariate analysis, however only postoperative day-1 cortisol was found to be significant as predictor of remission (p=0.02). CONCLUSION Postoperative plasma cortisol level is a strong independent predictor of remission and value less than 10.7µgm/dl can be taken as cut off for predicting remission. Remission provided by endoscopy appears to be significantly better than microscopic approach.


2020 ◽  
Vol 21 (5) ◽  
Author(s):  
WHINY HARDIYATI ERLIANA ◽  
Tri Widjaja ◽  
ALI ALTWAY ◽  
LILY PUDJIASTUTI

Abstract. Erliana WH, Widjaja T, Altway A, Pudjiastuti L. 2020. Synthesis of lactic acid from sugar palm trunk waste (Arenga pinnata): Hydrolysis and fermentation studies. Biodiversitas 21: 2281-2288. The increasing problems of global energy and the environment are the main reasons for developing products with new techniques through green methods. Sugar palm trunk waste (SPTW) has potential as agricultural waste because of its abundant availability, but it is not used optimally. This study was aimed to determine the effect of various microorganisms on increasing lactic acid production by controlling pH and temperature conditions in the fermentation process. SPTW contains 43.88% cellulose, 7.24% hemicellulose, and 33.24% lignin. The lignin content in SPTW can inhibit reducing sugar formation; the pretreatment process should remove this content. In the study, the pretreatment process was conducted using acid-organosolv. In the acid pretreatment, 0.2 M H2SO4 was added at 120oC for 40 minutes; organosolv pretreatment using 30% ethanol (v/v) at 107oC for 33 minutes was able to increase cellulose content by 56.33% and decrease lignin content by 27.09%. The pretreatment was followed by an enzymatic hydrolysis process with a combination of commercial cellulase enzymes from Aspergillus niger (AN) and Trichoderma reesei (TR), with variations of 0:1, 1:0, 1:1, 1:2 and 2:1. The best reducing sugar concentration was obtained with an AN: TR ratio of 1:2 to form reducing sugar from cellulose. Subsequently, lactic acid fermentation was carried out using lactic acid bacteria at 37oC and pH 6 incubated for 48 hours. The highest lactic acid concentration (33.292 g/L) was obtained using a mixed culture of Lactobacillus rhamnosus and Lactobacillus brevis to convert reducing sugar become lactic acid.


Holzforschung ◽  
2016 ◽  
Vol 70 (3) ◽  
pp. 267-274 ◽  
Author(s):  
Tatsuya Shirai ◽  
Hiroyuki Yamamoto ◽  
Miyuki Matsuo ◽  
Mikuri Inatsugu ◽  
Masato Yoshida ◽  
...  

Abstract Ginkgo (Ginkgo biloba L.) forms thick, lignified secondary xylem in the cylindrical stem as in Pinales (commonly called conifers), although it has more phylogenetic affinity to Cycadales than to conifers. Ginkgo forms compression wood-like (CW-like) reaction wood (RW) in its inclined stem as it is the case in conifers. However, the distribution of growth stress is not yet investigated in the RW of ginkgo, and thus this tissue resulting from negative gravitropism is still waiting for closer consideration. The present study intended to fill this gap. It has been demonstrated that, indeed, ginkgo forms RW tissue on the lower side of the inclined stem, where the compressive growth stress (CGS) was generated. In the RW, the micorofibril angle in the S2 layer, the air-dried density, and the lignin content increased, whereas the cellulose content decreased. These data are quite similar to those of conifer CWs. The multiple linear regression analysis revealed that the CGS is significantly correlated by the changes in the aforementioned parameters. It can be safely concluded that the negative gravitropism of ginkgo is very similar to that of conifers.


Weed Science ◽  
1980 ◽  
Vol 28 (1) ◽  
pp. 59-63 ◽  
Author(s):  
C. G. McWhorter ◽  
J. R. Williford

Field experiments were conducted to determine optimum nozzle settings for applying glyphosate [N-(phosphonomethyl)glycine] in the recirculating sprayer for postemergence control of johnsongrass [Sorghum halepense(L.) Pers.] in soybeans [Glycine max(L.) Merr.]. Herbicide sprays were directed across the row to johnsongrass growing taller than soybeans in July and August. Herbicide not sprayed on johnsongrass was trapped and reused. Glyphosate at 0.56, 1.12, and 2.24 kg/ha applied with commercially available 25° spray nozzles provided johnsongrass control and soybean yields equal to those following applications with specialized uniform droplet nozzles. Glyphosate at 1.7 kg/ha applied in the recirculating sprayer using only one nozzle per row provided control of johnsongrass equal to or better than that from applications made with two, three, or four nozzles per row. Soybean yield following application of glyphosate at 1.7 kg/ha with one nozzle per row was equal to yields obtained following its application with two, three, or four nozzles per row, with or without surfactant at 0.1% in spray solutions. Soybean yield was higher with four nozzles per row than with one nozzle per row when 0.5% surfactant was included in spray solutions. Soybean injury was lower and yield was higher when glyphosate was applied in the recirculating sprayer rather than over-the-top with a conventional sprayer. Glyphosate at 1.12 kg/ha applied in the recirculating sprayer caused more injury to ‘Hill’ and ‘Bragg’ than to ‘Forrest’ or ‘Tracy’ soybeans.


1989 ◽  
Vol 8 ◽  
pp. 635-644 ◽  
Author(s):  
Peter B. Stetson

AbstractThere are many factors which make it difficult to relate instrumental CCD photometry to a fundamental standard system with an accuracy much better than about 1%. Here I will address only three of them: (1) infrared leaks in the filters; (2) the finite opening and closing times of mechanical shutters; and (3) changes in the air mass for long integrations. I will be approaching these subjects from the point of view of a visiting astronomer at someone else’s observatory, who gets three or four nights of observing time a year, and has only the afternoons preceding those nights to perform whatever tests can be carried out while the equipment sits on the telescope.


Sign in / Sign up

Export Citation Format

Share Document