scholarly journals Structure, Composition, and Thermal Properties of Cellulose Fibers from Pueraria lobata Treated with a Combination of Steam Explosion and Laccase Mediator System

BioResources ◽  
2016 ◽  
Vol 11 (3) ◽  
pp. 6854-6866 ◽  
Author(s):  
Minghua Li ◽  
Guangting Han ◽  
Yan Song ◽  
Wei Jiang ◽  
Yuanming Zhang

Cellulosic fibers from the bast of Pueraria lobata (P. lobata) vine were separated using a “green” and efficient method that combined steam explosion (SE) and a laccase mediator system (LMS). The chemical components, structure, and thermal alterations in the fibers were evaluated. The SE performed at 180 °C for 10 min did not change the chemical composition of P. lobata; however, SE did alter the fiber structure and rendered its surface more accessible to the laccase enzyme. Treated and untreated samples were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), thermogravimetric analysis (TGA), and chemical methods. The cellulose content of the processed fibers was approximately 68.2%, and the lignin content was 11.8%, which was much lower than the 22.98% lignin content of the raw material. The cellulose fibers exhibited higher cellulose crystallinity and thermal stability compared with the untreated samples. This combined treatment approach may be useful for the isolation of cellulose fibers for composites, textiles, and other industrial applications.

Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 447
Author(s):  
Miguel Alfonso Quiñones-Reveles ◽  
Víctor Manuel Ruiz-García ◽  
Sarai Ramos-Vargas ◽  
Benedicto Vargas-Larreta ◽  
Omar Masera-Cerutti ◽  
...  

This study aimed to evaluate and compare the relationship between chemical properties, energy efficiency, and emissions of wood and pellets from madroño Arbutus xalapensis Kunth, tázcate Juniperus deppeana Steud, and encino colorado Quercus sideroxyla Humb. & Bonpl. in two gasifiers (top-lit-up-draft (T-LUD) and electricity generation wood camp stove (EGWCS)) in order to determine the reduction of footprint carbon. In accordance with conventional methodologies, we determined the extracts and chemical components (lignin, cellulose, holocellulose), and the immediate analyses were carried out (volatile materials, fixed carbon, ash content and microanalysis of said ash), as well as the evaluation of emission factors (total suspended particulate matter (PM2.5), CO, CO2, CH4, black carbon (BC), elemental carbon (EC), and organic carbon (OC)). The results were statistically analyzed to compare each variable among species and gasifiers. The raw material analyzed showed how the pH ranged from 5.01 to 5.57, and the ash content ranged between 0.39 and 0.53%. The content values of Cu, Zn, Fe, Mg, and Ca ranged from 0.08 to 0.22, 0.18 to 0.19, 0.38 to 0.84, 1.75 to 1.90, and 3.62 to 3.74 mg kg−1, respectively. The extractive ranges from cyclohexane were 2.48–4.79%, acetone 2.42–4.08%, methanol 3.17–7.99%, and hot water 2.12–4.83%. The range of lignin was 18.08–28.60%. The cellulose content ranged from 43.30 to 53.90%, and holocellulose from 53.50 to 64.02%. The volatile material range was 81.2–87.42%, while fixed carbon was 11.30–17.48%; the higher heating value (HHV) of raw material and pellets presented the ranges 17.68–20.21 and 19.72–21.81 MJ kg−1, respectively. Thermal efficiency showed statistically significant differences (p < 0.05) between pellets and gasifiers, with an average of 31% Tier 3 in ISO (International Organization for Standardization) for the T-LUD and 14% (ISO Tier 1) for EGWCS, with Arbutus xalapensis being the species with the highest energy yield. The use of improved combustion devices, as well as that of selected raw material species, can reduce the impact of global warming by up to 33% on a cooking task compared to the three-stone burner.


2019 ◽  
Vol 48 (3) ◽  
pp. 547-557
Author(s):  
Hui-Jin Liu ◽  
Li Zhang ◽  
Yan-Nian Xu ◽  
Xiao-Ping Zhang ◽  
Xiao-Hong Li

The bark of Pteroceltis tatarinowii Maxim., an endemic tree in Ulmaceae, is the main raw material for manufacturing Xuan Paper which is widely used in calligraphy and painting field. The characteristics of P. tatarinowii bark is the main limiting factor for the quality of Xuan Paper specially the content of cellulose and lignin. The molecular basis related to cellulose and lignin synthesis in P. tatarinowii would be helpful to understand and seek higher quality raw materials for Xuan Paper. RNA-seq was utilized to reveal transcriptome differences in P. tatarinowii from three far isolated localities (AL, JX and XA) under different climate environments. A total of 290 million reads were generated for further analysis in three libraries. In total, 2,850, 2,038 and 1,986 DEGs were identified in XA, JX and AL, respectively. Compared with the sample from XA, there were 822 up-regulated and 1706 down-regulated in AL sample. AL sample has 611 up-regulated genes and 647 down-regulated genes in comparison with JX sample. Comparing XA and JX samples, 443 were up-regulated and 1,783 were down-regulated in XA. Three samples had similar GO enrichment patterns. There were 19 and 9 genes identified as CESA and CSL (E-value less than 1.0E-20), respectively. Although no significant expression differences were found in three samples, KOB1, GPI-anchored protein gene and CTL1 were differently expressed, and KOB1 and GPI-anchored protein gene were up-regulated in JX. A number of the unigenes (474) that were involved in ‘phenylpropanoid biosynthesis’, were mostly not differently expressed. Only a few genes annotated as PAL, 4CL, C4H and CAD were significantly different in expression. In AL, 3 CAD and 1 PAL were up-regulated, whereas 6 CAD, 3 4CL and 1 HCT were up-regulated in XA, and 1 PAL, 2 4CL, 2 C4H in JX. JX sample had the highest cellulose content and XA sample had the highest lignin content, which being consistent with the hierarchical cluster analysis of differently expressed genes. Differences in the expression of these genes might influence the cellulose and lignin content.


2018 ◽  
Vol 154 ◽  
pp. 01005 ◽  
Author(s):  
Fauzan Nazif ◽  
Mahmud Sudibandriyo

Indonesia is one of the countries with the highest levels of air pollution in the world. Air pollution in Indonesia, especially in Jakarta due to the number of private vehicles increased at least 10% every year. This air pollution can have an impact on public health. One effort to do as a protection of people health is to use a mask. Activated carbon can be coated to mask in order to improve the effectiveness in reducing the pollutants. One good material used as material for activated carbon is coconut shell. Selection of coconut shell as the raw material of activated carbon is also based on cellulose content of 26.06%, hemicellulose content 27.07% and a lignin content of 29.40% in the dry state. This research was done in some variation such as activation methods, activated carbon mass, and adhesive material types. Based on pollutants adsorption test, mask with 6 grams of activated carbon, chemically activated, and used TEOS as adhesive is the best variation that able to adsorb as much 76,25% of CO2 Pollutants. Mask made in this research, has saturation time as long as 4 hours under high CO2 concentration.


2011 ◽  
Vol 3 (1) ◽  
pp. 24
Author(s):  
Yuniarti Yuniarti

The objective of this study was to determine the chemical components of three kinds of social forestry timber of Jengkol, Madang, and Bangkinang, where wood samples was procured from Loksado South Kalimantan. The analysis was conducted according to TAPPI Standard with three replications for each sample. Result shows that Jengkol wood contained 44.73% of cellulose, 79.19% of holocellulose, 32.14% of lignin, 4.08% of extractive and 3.42% of ash. Madang wood contained 45.02% of cellulose, 80.05% of holocellulose, 31.60% of lignin, 4.06% of extractive and 4.59% of ash. Bangkinang wood contained 45.76% of cellulose, 72.84% of holocellulose, 20.90% of  lignin, 2.89% of extractive and 3.9% of ash. This research indicated that among three social forestry timber investigated, the Bangkinang wood is better than two others as sources of raw material for pulp and paper due to the highest cellulose content and lowest lignin and extractives contents.Keywords: chemical properties, Jengkol, Madang, Bangkinang


2016 ◽  
Vol 3 (02) ◽  
Author(s):  
Mahammad Khadafi ◽  
Yuniarti P. Kencana

The use of aseptic packaging in the world is still increasing from year to year, this causes a new matter like midden. Recycling the aseptic packaging is one of the efforts to utilize this waste. The raw material used for cellulose acetate crystal can be obtained from recycling process of aseptic packaging waste. This can be possible because pulp from aseptic packaging contain 72% needle unbleached virgin pulp. The purpose of this reasearch is to diversify the use of aseptic packaging waste by improving the technology process of acetylation for making cellulose acetate crystal. Aseptic packaging pulp was tested for the parameters such as water content, ash content, holocellulose content, α-cellulose content, lignin content, and hemicellulose content. This tested was used to know the eligibility of pulp for making cellulose acetate. The pulp was soaked with water and glacial acetic acid for swelling and conditioning. The acetylation process was done with adding glacial acetic acid and acetic acid anhydride in certain composition. Based on ASTM D 871-96 testing method, we obtained the optimum condition of acetyl content is 36.85% by adding 2.25 mL water and 35 mL acetic acid anhydride, whereas with the addition of 2.75 mL water and 30 mL acetic acid anhydride 28.28% acetyl content were obtained.Keywords : aseptic packaging pulp, acetate cellulose, acetylation process, acetyl content  ABSTRAKPenggunaan kemasan aseptik yang meningkat dari tahun ke tahun, menimbulkan masalah baru berupa limbah. Salah satu upaya pemanfaatan limbah adalah melalui proses daur ulang. Hasil proses daur ulang ini diantaranya dapat dijadikan substitusi bahan baku produk derivat selulosa berupa selulosa asetat, karena limbah kemasan aseptik mengandung pulp virgin serat panjang 72%. Tujuan dari penelitian ini adalah untuk diversifikasi penggunaan dan pemanfaatan limbah kemasan aseptik melalui proses daur ulang dan penguasaan teknologi proses asetilasi untuk produk selulosa asetat. Pulp kemasan aseptik diuji dengan parameter kadar air, kadar abu, kadar holoselulosa, kadar α selulosa, kadar lignin, dan kadar hemiselulosa untuk mengetahui apakah pulp kemasan aseptik memenuhi persyaratan untuk dibuat selulosa asetat. Perendaman pulp dilakukan dengan air dan asam asetat glasial, kemudian diperas untuk mengkondisikan pulp sebelum proses asetilasi. Proses asetilasi dilakukan dengan menambahkan asam asetat glasial dan asam asetat anhidrida dalam jumlah tertentu. Berdasarkan metode ASTMD 871-96 diperoleh kadar asetil optimal dari kristal selulosa asetat sebesar 36,85% dengan penambahan air 2,25 mL dan asetat anhydrida 35 ml, sedangkan untuk penambahan asam asetat anhidrida 30 mL dan air 2,75 mL diperoleh kadar asetil 28,28%.Kata kunci : pulp kemasan aseptik, selulosa asetat, asetilasi, kadar asetil


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3734-3745
Author(s):  
Wenhua Gao ◽  
Luyao Huang ◽  
Zhihui Lei ◽  
Zhiwei Wang

The aim of this study was to investigate a potential biorefinery process to realize the high utilization of Camellia oleifera shell (COS), which is an agricultural by-product mainly composed of cellulose, hemicellulose, and lignin. Before treatment by steam explosion, the COS was impregnated with water, 3.0 wt% NaOH solution, or 3.0 wt% H2SO4 solution. The morphological structure and chemical composition of the steam-exploded COS pulp were investigated. The results indicated that the impregnation treatments increased the cellulose content of the steam-exploded COS pulp and decreased the hemicellulose and lignin content. The morphology of steam-exploded COS fiber was short, coarse and stiff. Hydrophobic and colorful handsheets were fabricated by mixing proportional bleached softwood fiber. This study demonstrated that COS was a potential material for the papermaking industry, and the combination of water impregnation and steam explosion treatment for COS was a good pulp process.


2019 ◽  
Vol 4 (1) ◽  
pp. 32-36
Author(s):  
Amsalu Tolessa ◽  
Fikremariam Haile ◽  
Abraham Dilnesa ◽  
Buzayehu Desisa ◽  
Tegene Tantu ◽  
...  

This paper studied the chemical composition of cultivated 3, 4 and 5 year-old highland bamboo (Y. alpina) which were classified into three position (top, medium and bottom) to determined the main compositions especially cellulose, lignin, extractive and ash content. From all culms representative samples were converted to the required size of wood chips to prepared sample for chemical testing. Then the specimens prepared from bottom, middle and top portions for the three ages were used to determine the chemical properties in accordance to American Society for Testing and Materials (ASTM) standards except for cellulose test determined according to Kurschner and Hoffer method. All parameters in the experiment were expressed by percent based on dry basis. From this research, we have found small but significant increases in mean cellulose content from the base to the top of the culm at all three ages. The lignin content in Y. alpina species of bamboo is in the ranged of 23.04 to 30.03%. The mean values of the chemical constituents in 3, 4 and 5- year-old culms were 51.83, 54.94 and 49.78% for cellulose content, 28.28, 24.99 and 24.53% for lignin content, 7.8, 10.09, and 9.54% for alcohol-toluene extractive, respectively. In general, the comprehensive knowledge of the chemical components in the bamboo species will facilitate the use of the materials in the forestry industrial sector and help to enhance their utilization in the chemical and bio-chemical related industry.


2021 ◽  
Vol 13 (2) ◽  
pp. 159-171
Author(s):  
Erdiana Gultom ◽  
◽  
Hestina Hestina ◽  
Nova Florentina ◽  
Barita Aritonang ◽  
...  

Research on paper made from coconut and tofu waste has been carried out using the alkalization method of separation technique, with the optimum composition as follows: NaOH concentration used is 3.0% and cooking temperature is 100 0C and the time required is 90 minutes. The results of the catheterization test of paper made from coconut dregs and tofu have a water content of 3.2%; pH 6.9, pulp content 65.75%; cellulose content 80.22%; lignin content 18.27%. The results of the FT-IR spectrum analysis of coconut pulp and tofu pulp are suitable for use as raw materials for making paper because they contain cellulose fibers. This is indicated by the appearance of the O-H hydroxyl group which is observed at a wavenumber of 3312 cm-1. Based on the SEM results, the surface morphology of the coconut pulp and tofu combination paper shows that the surface structure is the denser the fiber bonds, the smaller the fiber diameter, the better the mechanical properties. The results of the research conclusions explain that, paper made from coconut and tofu waste has met the requirements set by SNI 14-0444-1989. Keywords: Paper, Cellulose, Coconut pulp, Tofu pulp, Lignin


2020 ◽  
Vol 54 (24) ◽  
pp. 3611-3624 ◽  
Author(s):  
Lucas G P Tienne ◽  
Suellem B Cordeiro ◽  
Elisa B Brito ◽  
Maria de Fátima Vieira Marques

The use of cellulose fibers derived from renewable resources as reinforcement in polymeric composites provides positive environmental benefits with respect to disposal and raw material savings. Microcrystalline cellulose is a regenerated cellulose material that is free of lignin and hemicellulose, widely used in various applications. Recently, there has been enormous interest in producing polymer nanocomposites using cellulose nanofibers as reinforcement. Moreover, the steam explosion process is an ecofriendly method to modify cellulose fibers by inducing fibrillation, allowing the production of nanofibers. Fibrillation of microcrystalline cellulose using steam explosion process as the only cellulose treatment process was not yet studied in the literature. In the present work, steam explosion process was applied to commercial microcrystalline cellulose and the obtained fibers were characterized and employed in composites with polypropylene for evaluation of the thermal, mechanical, and morphological properties in relation to the matrix. The results showed that this process promoted partial fibrillation to nanosized diameter, and an increase in crystalline degree and thermal stability of the original fiber. As for the polypropylene/cellulose composites in the absence of compatibilizer, there was an increase of thermal degradation temperature and mechanical properties measured by dynamic-mechanical analysis in comparison with pure polypropylene.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 731
Author(s):  
Javier M. Loaiza ◽  
Ascensión Alfaro ◽  
Francisco López ◽  
María T. García ◽  
Juan C. García

In a biorefinery framework, a laccase/mediator system treatment following autohydrolysis was carried out for eucalyptus wood prior to soda-anthraquinone pulping. The enzymatic and autohydrolysis conditions, with a view to maximizing the extraction of hemicelluloses while preserving the integrity of glucan, were optimized. Secondly, pulping of solid phase from Eucalyptus globulus wood autohydrolysis and the enzymatic process was carried out and compared with a conventional soda-anthraquinone (AQ) pulping process. The prehydrolysis and enzymatic delignification of the raw material prior to the delignification with soda- Anthraquinone (AQ) results in paper sheets with a lower kappa number and brightness and strength properties close to conventional soda-AQ paper and a liquid fraction rich in hemicellulose compounds that can be used in additional ways. The advantage of this biorefinery scheme is that it requires a lower concentration of chemical reagents, and lower operating times and temperature in the alkaline delignification stage, which represents an economic and environmental improvement over the conventional process.


Sign in / Sign up

Export Citation Format

Share Document