Simulation Analysis of Support Installation Vehicle’s Working Unit Based on ADAMS

2012 ◽  
Vol 482-484 ◽  
pp. 1707-1712
Author(s):  
Hui Sheng Guan ◽  
Ke Long Luo ◽  
Dong Dong

This paper introduces the structural composition and the working principle of the support installation vehicle. The 3D model of the support installation vehicle is established in SolidWorks and imported into ADAMS. Then the virtual prototyping model of the support installation vehicle is established with ADAMS software. The dynamically leveling angle curve of the leveling mechanism is obtained by the simulation analysis. Curves of cylinders’ driving force and the joint force are also derived. The results of simulation analysis contribute to the finite element analysis of working unit and the designs of cylinders of the support installation vehicle.

2014 ◽  
Vol 1079-1080 ◽  
pp. 177-182
Author(s):  
Shao Wu Zhang ◽  
Ying Chuan Chen ◽  
Geng Biao Zhang

In order to study the performance of concrete frame columns that reinforcedby assembleinclined web steel truss, with the same reciprocatinghorizontal displacement and different axialcompression.It canbe calculate the mechanical behavior of concrete frame columns and reinforced columns by using the finite element analysis software ABAQUS. Simulation analysis shows that the bearing capacity ofreinforced columnshas greatly increased andpresented a full hysteresis curve. The result shows that the reinforcement method of assemble inclined web steel truss can greatly improve the bearing capacity and ductility of the concrete frame column, and the axial compression is larger, the better the reinforcement effect.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Zhen Ouyang ◽  
Ke Wang ◽  
Zihao Yu ◽  
Kaikai Xu ◽  
Qianyu Zhao ◽  
...  

It is a complex problem to study the interaction between sand castle and flowing water, which needs to consider the complexity of seawater flow and the stress of sand castle structure. The authors use the fluid-solid coupling model to establish the connection between the fluid field and the structural mechanical field, and use the finite element analysis to complete the simulation modeling of the transient process of wave impact and sandcastle foundation deformation. This paper analyzes the stress and the first principal strain of the sand castle foundation in the direction of flow velocity when the sand castle foundation is hit by waves, as a method to judge the strength of the sand castle.The best shape: the boundary value of sand castle collapse caused by strain have been determined, so as to obtain the maximum stress that a sand castle foundation can bear before collapse, which makes it possible to use the fatigue strength calculation theory of sand castle solid to carry out the quantitative calculation of sand castle durability. At the same time, the impact of waves is abstracted as wave motion equation. Finally, the finite element analysis technology is adopted to calculate the main strain of sandcastles of different shapes under the impact of the same wave, and through the comparison of the main strain, the authors get the sandcastle shape with the strongest anti-wave impact ability, which is the eccentric circular platform body.Affected by rain: the authors considered the effect of rainwater infiltration on the sandcastle's stress, and simplified the process of rain as a continuous and uniform infiltration of rain into the sandcastle's surface. The rain changes the gravity of the sand on the castle's surface. Simulation analysis is adopted to calculate the surface stress of sand castle with different degree of water seepage and different geometry. By comparison, it has been found that the smooth cone is more able to withstand the infiltration of rain without collapse. 


2012 ◽  
Vol 605-607 ◽  
pp. 1427-1430 ◽  
Author(s):  
Fan Zhang ◽  
Zhi Xin Ma ◽  
Shang Gao

Based on the structure and working principle of our giant magnetostrictive actuator (GMA), the properties of the driving magnetic field were researched. A 3-D nonlinear magnetic field model of the GMA was established with the finite element analysis method, and the magnetic field distribution of the GMA was obtained with the software ANSYS. Then the 3-D model helped us to find the effects about the distribution of magnetic field of the GMA from the structure. The 3-D magnetic field finite element analysis model can give us a new tool of GMA design and analysis.


2013 ◽  
Vol 328 ◽  
pp. 468-472
Author(s):  
Hua Li ◽  
Jiang Jiang Zhao ◽  
Zhen Yin ◽  
Kun Ren

Based on the theory of ultrasonic vibration, a new type of ultrasonic atomizing vibrator (UAV) with a vibrating steel sheet was proposed. By using the finite element analysis software to simulation analysis and research for the new type of vibrator, the frequency and vibration mode of atomizing steel sheet was obtained and the prototype of vibrator was fabricated. The impedance and vibration displacement of the vibrator was tested and the experiment of the new type of vibrator was carried out, which verified the feasibility of the new type of vibrator design method.


2021 ◽  
Vol 871 ◽  
pp. 234-239
Author(s):  
Sheng Li Yan ◽  
Hao Li ◽  
Fei Zhan

The study aims to explore the preparation of aviation mechanical carbon fiber reinforced plastics (CFRP) and the properties of CFRP composites. Taking the aero box body as an example, the mechanical properties of CFRP are studied. The preparation of CFRP is analyzed by searching the data. CFRP plates are explored according to the stress analysis of composite materials. The finite element analysis software ANSYS Workbench and UG software are adopted to build the 3D model of the aero box body. After adding materials in ANSYS Workbench and simplifying the UG model, the finite element analysis of the model is carried out by computer. The 3D model of the aero box is constructed, the finite element analysis of the aero box is carried out, and the mechanical properties of CFRP are explored. In this study, the possibility of the practical application of CFRP in the aviation box body lightweight is clarified, which gives a direction for the subsequent actual molding and guides the application of CFRP in aviation field.


2011 ◽  
Vol 84-85 ◽  
pp. 294-298
Author(s):  
Qi Ming Yang ◽  
Ying Fu ◽  
Cun Yong Guo

There was a new down-hole BOP that was designed to control blowout effectively in exploiting petroleum gas. The BOP was a new blowout preventer with a good development prospect which can not only automatically shut underground, but also control and automatically discharge shut up-hole state on the ground. Through introducing structure and working principle of the BOP, as well as the finite element analysis of some key components, there has been showed that the down-hole blowout preventer met the strength requirements and had relatively high security. The down-hole blowout preventer with a simple structure can not only work reliably but also complete the act of preventing blowout and unlocking many times to prevent blowout effectively and to improve drilling operations safety and efficiency. It will have a bright development prospect.


2013 ◽  
Vol 442 ◽  
pp. 291-297
Author(s):  
Jun Hua Yu ◽  
Li Jia Xu ◽  
Ke Fan Ren ◽  
Wei Peng Zhang ◽  
Zhi Gang Lu ◽  
...  

This Paper designs a mechanical device for the manipulator of the watermelon picking machine against the low mechanical degree of watermelon picking machine. The mechanical device utilizes a mechanical arm to drive the end effector to run and the end effector is responsible for clamping and shearing watermelon vines, which avoids vine disturbance and sorts out vines to be easily cut down through the process design of clamping, promoting, and re-shearing. In addition, this Paper applies Pro/E modeling, finite element analysis, and simulation analysis to complete the 3D model design of the mechanical device and transforms the 3D model into 2D drawings in Auto CAD to complete the manufacturing and assembly of the manipulator, and the test result verifies the mechanical device may realize the reliable picking of watermelons.


2014 ◽  
Vol 599-601 ◽  
pp. 940-943
Author(s):  
Fei Zhou ◽  
Guo Min Lin ◽  
Miao Shang ◽  
Wen Guang Zhang

Capacitive sensor is a kind of parameter type sensor that capacitance is measured is converted to capacitance change. It is widely used in pressure, liquid level, displacement and other tests. In this article, the development status of capacitance sensor is showed; the working principle of capacitive sensor was introduced; through the method of grid subdivision, loading and solving of boundary conditions and the finite element post-processing, etc., the finite element analysis of capacitance sensor is complete, it has important guiding significance for capacitance sensor application research.


2012 ◽  
Vol 510 ◽  
pp. 165-169
Author(s):  
Yong Bai Sha ◽  
Xiao Peng Wan ◽  
Xiao Ying Zhao

This paper presents the structure design, the working principle and the relevant calculation of the mechanical clamping claw of the land rigs automatic arranging drill pipe system. Applying the Generative Structural Analysis module of the CATIA, we can get the Von Mises stress image to show the stress distribution. The finite element analysis provides a simple effective method for the design of the structure of the mechanical clamping claw. Through this device the drill pipe can be transferred automatically and circularly from the rat hole to the pipe racking system and from pipe racking system to the mouth of the well.


2019 ◽  
Vol 11 (3) ◽  
pp. 168781401982998 ◽  
Author(s):  
Dong Sun ◽  
Yu-juan Tang ◽  
Jiong Wang ◽  
Xin-jie Wang

A novel cylindrical ultrasonic motor easy to be fixed is proposed in this article. There are threaded holes on the bottom of stator used for fixing, distinguishing it from other cylindrical stators. The bottom is machined as a round lug boss. Its radius is smaller than the inner radius of the stator in order not to affect the excitation of vibration mode. The finite element analysis was accomplished to verify the working principle. Based on the analysis, a prototype was fabricated and measured. The mechanical output characteristics were obtained by experiments. The maximal velocity of the proposed motor is 170 r/min at the operating frequency of 31.6 kHz.


Sign in / Sign up

Export Citation Format

Share Document