Simulation Research on Stress – Damage Law of the Blood Cells

2012 ◽  
Vol 482-484 ◽  
pp. 776-779
Author(s):  
Xiong Xie ◽  
Jian Ping Tan

Through simulation analysis of the blood cell by Abques under the function of the different pressures, the change of the cell’s axial diameter and the importance of the effect of external force and double concave shape on the erythrocyte’s deformability are obtained. It lays the foundation for the research artificial organs lubrication.

Angiology ◽  
2019 ◽  
Vol 70 (8) ◽  
pp. 711-718 ◽  
Author(s):  
Zhichao Wang ◽  
Chi Liu ◽  
Hong Fang

Major advances in coronary interventional techniques and pharmacotherapy as well as the use of drug-eluting stents (DESs) have considerably reduced the risk of in-stent restenosis (ISR). However, ISR remains a major clinical challenge. Inflammation and platelet activation are important processes that underlie the pathophysiology of ISR. Parameters related to blood cells, entailing both cell count and morphology, are useful markers of the inflammatory response and platelet activation in clinical practice. Recent studies have highlighted several new combined or derived parameters related to blood cells that independently predict ISR after DES implantation. The neutrophil/lymphocyte ratio, an inflammatory marker, is regarded as a predictor of the risk of ISR and the stability of atherosclerotic plaques. The mean platelet volume, a widely used platelet activation parameter, has been shown to be a predictor of the risk of ISR and the efficacy of antiplatelet therapy. Other markers considered include the platelet/lymphocyte ratio, red blood cell distribution width, and platelet distribution width. This review provides an overview of these parameters that may help stratify the risk of coronary angiographic and clinical outcomes related to ISR.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Wenxiu Zhao ◽  
Haibo Yu ◽  
Yangdong Wen ◽  
Hao Luo ◽  
Boliang Jia ◽  
...  

Counting the number of red blood cells (RBCs) in blood samples is a common clinical diagnostic procedure, but conventional methods are unable to provide the size and other physical properties...


2021 ◽  
Vol 11 (3) ◽  
pp. 195
Author(s):  
Yitang Sun ◽  
Jingqi Zhou ◽  
Kaixiong Ye

Increasing evidence shows that white blood cells are associated with the risk of coronavirus disease 2019 (COVID-19), but the direction and causality of this association are not clear. To evaluate the causal associations between various white blood cell traits and the COVID-19 susceptibility and severity, we conducted two-sample bidirectional Mendelian Randomization (MR) analyses with summary statistics from the largest and most recent genome-wide association studies. Our MR results indicated causal protective effects of higher basophil count, basophil percentage of white blood cells, and myeloid white blood cell count on severe COVID-19, with odds ratios (OR) per standard deviation increment of 0.75 (95% CI: 0.60–0.95), 0.70 (95% CI: 0.54–0.92), and 0.85 (95% CI: 0.73–0.98), respectively. Neither COVID-19 severity nor susceptibility was associated with white blood cell traits in our reverse MR results. Genetically predicted high basophil count, basophil percentage of white blood cells, and myeloid white blood cell count are associated with a lower risk of developing severe COVID-19. Individuals with a lower genetic capacity for basophils are likely at risk, while enhancing the production of basophils may be an effective therapeutic strategy.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Yuncheng Man ◽  
Debnath Maji ◽  
Ran An ◽  
Sanjay Ahuja ◽  
Jane A Little ◽  
...  

Alterations in the deformability of red blood cells (RBCs), occurring in hemolytic blood disorders such as sickle cell disease (SCD), contributes to vaso-occlusion and disease pathophysiology. However, there are few...


2016 ◽  
Vol 806 ◽  
pp. 102-128 ◽  
Author(s):  
D. Matsunaga ◽  
Y. Imai ◽  
C. Wagner ◽  
T. Ishikawa

The reorientation phenomenon of a single red blood cell during sedimentation is simulated using the boundary element method. The cell settles downwards due to a density difference between the internal and external fluids, and it changes orientation toward a vertical orientation regardless of Bond number or viscosity ratio. The reorientation phenomenon is explained by a shape asymmetry caused by the gravitational driving force, and the shape asymmetry increases almost linearly with the Bond number. When velocities are normalised by the driving force, settling/drifting velocities are weak functions of the Bond number and the viscosity ratio, while the angular velocity of the reorientation drastically changes with these parameters: the angular velocity is smaller for lower Bond number or higher viscosity ratio. As a consequence, trajectories of the sedimentation are also affected by the angular velocity, and blood cells with slower reorientation travel longer distances in the drifting direction. We also explain the mechanism of the reorientation using an asymmetric dumbbell. From the analysis, we show that the magnitude of the angular velocity is explained by two main factors: the shape asymmetry and the instantaneous orientation angle.


2013 ◽  
Vol 411-414 ◽  
pp. 145-151
Author(s):  
Xiao Dong Kou ◽  
Bo Zhang ◽  
Lin Yang

With features of good interactivity and fast spread speed, unofficial networks play a significant role in knowledge transfer. Based on theories of communication networks and computational modeling method, the transfer situation of complex networks theory within Chinas learned societies, including its rising, spread and development, was modeled and then made simulation analysis by using the Blanche software. By comparing the analysis results with periodicals data from China National Knowledge Infrastructure, the effectiveness of the built model and the reliability of Blanche in multi-agent simulation research are all validated. Furthermore, the future development of complex networks theory in China is predicted as well.


1999 ◽  
Vol 277 (2) ◽  
pp. H508-H514 ◽  
Author(s):  
Charmaine B. S. Henry ◽  
Brian R. Duling

The endothelial cell glycocalyx influences blood flow and presents a selective barrier to movement of macromolecules from plasma to the endothelial surface. In the hamster cremaster microcirculation, FITC-labeled Dextran 70 and larger molecules are excluded from a region extending almost 0.5 μm from the endothelial surface into the lumen. Red blood cells under normal flow conditions are excluded from a region extending even farther into the lumen. Examination of cultured endothelial cells has shown that the glycocalyx contains hyaluronan, a glycosaminoglycan which is known to create matrices with molecular sieving properties. To test the hypothesis that hyaluronan might be involved in establishing the permeation properties of the apical surface glycocalyx in vivo, hamster microvessels in the cremaster muscle were visualized using video microscopy. After infusion of one of several FITC-dextrans (70, 145, 580, and 2,000 kDa) via a femoral cannula, microvessels were observed with bright-field and fluorescence microscopy to obtain estimates of the anatomic diameters and the widths of fluorescent dextran columns and of red blood cell columns (means ± SE). The widths of the red blood cell and dextran exclusion zones were calculated as one-half the difference between the bright-field anatomic diameter and the width of the red blood cell column or dextran column. After 1 h of treatment with active Streptomyces hyaluronidase, there was a significant increase in access of 70- and 145-kDa FITC-dextrans to the space bounded by the apical glycocalyx, but no increase in access of the red blood cells or in the anatomic diameter in capillaries, arterioles, and venules. Hyaluronidase had no effect on access of FITC-Dextrans 580 and 2,000. Infusion of a mixture of hyaluronan and chondroitin sulfate after enzyme treatment reconstituted the glycocalyx, although treatment with either molecule separately had no effect. These results suggest that cell surface hyaluronan plays a role in regulating or establishing permeation of the apical glycocalyx to macromolecules. This finding and our prior observations suggest that hyaluronan and other glycoconjugates are required for assembly of the matrix on the endothelial surface. We hypothesize that hyaluronidase creates a more open matrix, enabling smaller dextran molecules to penetrate deeper into the glycocalyx.


Sign in / Sign up

Export Citation Format

Share Document