The Preparation and Antimicrobial Activity of Peptide Fractions from Blue Mussel (Mytilus edulis) Protein Hydrolysate

2012 ◽  
Vol 485 ◽  
pp. 340-347
Author(s):  
Shi Yuan Dong ◽  
Hong Xia Song ◽  
Yuan Hui Zhao ◽  
Zun Ying Liu ◽  
Bin Bin Wei ◽  
...  

The blue mussel protein hydrolysates were separated using the consecutive chromatographic methods including ion exchange, gel filtration, high performance liquid chromatography to identify a potent antimicrobial activity. The fraction (MAMP) separated by HPLC, exhibiting strong activity against Gram-positive (E. coli, P. aeruginosa, S. dysenteriae, P. vuigaris, E. aerogenes) with the minimal inhibitory concentrations (MIC) from 15.63 to 31.25 μg/mL, and Gram-negative bacteria (S. aureus, B. subtilis and M. lysodeikticus) with MIC from 31.25 to 62.5 μg /mL. MAMP had good thermal and pH stability, and consisted of three main amino acids (Ser, Pro and Cys). The antimicrobial activity of MAMP was possibly related to its higher cysteine residues and contents of hydrophobic amino acid. Therefore, MAMP could be a natural antimicrobial source suitable for use as a food additive.

Author(s):  
M. V. Sycheva ◽  
A. S. Vasilchenko ◽  
E. A. Rogozhin ◽  
T. M. Pashkova ◽  
L. P. Popova ◽  
...  

Aim. Isolation and study ofbiological activity of antimicrobial peptides from chickens thrombocytes. Materials and methods. Peptides from chickens thrombocytes, obtained by reverse-phase high-performance liquid chromatography method with stepped and linear gradients of concentration increase of the organic solvent were used in the study. Their antimicrobial activity was determined by microtitration method in broth; mechanism of biological effect - by using fluorescent spectroscopy method with DNA-tropic dyes. Results. Individual fractions of peptides were isolated from chickens thrombocytes, that possess antimicrobial activity against Staphylococcus aureus P209 and Escherichia coli K12. A disruption of integrity of barrier structures of microorganisms under the effect of thrombocyte antimicrobial peptides and predominance of cells with damaged membrane in the population of E. coli was established. Conclusion. The data obtained on antimicrobial activity and mechanism of bactericidal effect of the peptide fractions from chickens thrombocytes isolated for the first time expand the understanding of functional properties of chickens thrombocytes and open a perspective for their further study with the aim of use as antimicrobial means.


2019 ◽  
Vol 10 ◽  
pp. 1864-1872
Author(s):  
Prof. Teodora P. Popova

The effect of ionized aqueous solutions (anolytes and catholyte) in the processing of fruits (cherries, morellos, and strawberries) for decontamination has been tested. Freshly prepared analytes and catholyte without the addition of salts were used, as well as stored for 7 months anolytes, prepared with 0.5% NaCl and a combination of 0.5% NaCl and 0.5% Na2CO3. The anolyte prepared with a combination of 0.5% NaCl and 0.5% Na2CO3, as well as the anolyte obtained with 0.5% NaCl, exhibit high antimicrobial activity against the surface microflora of strawberries, cherries, and sour cherries. They inactivate E. coli for 15 minutes. The other species of the fam. Enterobacteriaceae were also affected to the maximum extent, as is the total number of microorganisms, especially in cherries and sour cherries. Even stored for 7 months, they largely retain their antimicrobial properties. Anolyte and catholyte, obtained without the addition of salts, showed a lower effect on the total number of microorganisms, but had a significant effect on Gram-negative bacteria, and especially with regard to the sanitary indicative E. coli.


2021 ◽  
Author(s):  
Smita J. Pawar ◽  
Amol Kale ◽  
Priya Zori ◽  
Rahul Dorugade

Abstract Abstract The new series of 2-(substituted amino)-N-(6- substituted-1,3-benzothiazol-2yl) acetamide BTC(a-t) has been synthesized by appropriate synthetic route from substituted 2-amino benzothiazole. The synthesized compounds were screened experimentally for its antimicrobial property against gram positive, gram negative bacteria and fungi. Zone of inhibition and minimum inhibitory concentration of compounds was determined against selected bacterial and fungal strains. Compound BTC-j N-(6-methoxy-1,3-benzothiazol-2-yl)-2-(pyridine-3-yl amino) acetamide and compound BTC-r N-(6-nitro-1,3-benzothiazol-2-yl)-2-(pyridine-3-yl amino) acetamide found to have good antimicrobial potential. The compound BTC-j has shown good antibacterial activity against S. aureus at MIC of 12.5 µg/ml, B. subtilis at MIC of 6.25µg/ml, E. coli at MIC of 3.125µg/ml and P. aeruginosa at MIC of 6.25µg/ml. No statistical difference in antimicrobial activity of standard and test compounds was found indicating test compounds have comparable activity. Further docking study was carried out to check the probable interactions with the selected protein using V-life MDS 3.5 software. (DNA gyrase, PDB: 3G75). The dock score of compounds and antimicrobial activity found to be consistent.


2020 ◽  
Vol 21 (22) ◽  
pp. 8654
Author(s):  
Yanath Belguesmia ◽  
Noura Hazime ◽  
Isabelle Kempf ◽  
Rabah Boukherroub ◽  
Djamel Drider

Lacticaseibacillus paracasei CNCM I-5369, formerly Lactobacillus paracasei CNCM I-5369, produces bacteriocins that are remarkably active against Gram-negative bacteria, among which is the Escherichia coli-carrying mcr-1 gene that is involved in resistance to colistin. These bacteriocins present in the culture supernatant of the producing strain were extracted and semi-purified. The fraction containing these active bacteriocins was designated as E20. Further, E20 was loaded onto alginate nanoparticles (Alg NPs), leading to a highly active nano-antibiotics formulation named hereafter Alg NPs/E20. The amount of E20 adsorbed on the alginate nanoparticles was 12 wt.%, according to high-performance liquid chromatography (HPLC) analysis. The minimal inhibitory concentration (MIC) values obtained with E20 ranged from 250 to 2000 μg/mL, whilst those recorded for Alg NPs/E20 were comprised between 2 and 4 μg/mL, which allowed them to gain up to 500-fold in the anti-E. coli activity. The damages caused by E20 and/or Alg NPs/E20 on the cytology of the target bacteria were characterized by transmission electron microscopy (TEM) imaging and the quantification of intracellular proteins released following treatment of the target bacteria with these antimicrobials. Thus, loading these bacteriocins on Alg NPs appeared to improve their activity, and the resulting nano-antibiotics stand as a promising drug delivery system.


2011 ◽  
Vol 8 (3) ◽  
pp. 1430-1437 ◽  
Author(s):  
S. S. Deo ◽  
F. Inam ◽  
R. P. Mahashabde

The antimicrobial activity of crude methanolic and aqueous extracts ofOcimum sanctumandOcimum kilimandsacharicumagainst gram positive, gram negative and antifungal activity was evaluated to find the zone of inhibition and to set a HPLC profile or fingerprint of these extracts. The crude methanolic extract ofOcimum sanctumshowed strong antimicrobial activity againstS.aureusandC. albicansand moderate activity againstE. coliandB. subtilis. The crude methanolic extract ofOcimum kilimandsacharicumshowed strong antimicrobial activity againstS. aureus, E. coliandC. albicansat higher concentration, same as that shown by the standard forC. albicans. It showed moderate activity againstB. subtilis. The crude aqueous extracts of Ocimum sanctum showed strong antimicrobial activity againstS.aureusand moderate against others. Whereas the crude aqueous extracts ofOcimum kilimandsacharicumshowed moderate activity against the gram positive and gram negative organisms and strong activity againstC. albicansat higher concentration, same as that shown by the standard forC. albicans.


2013 ◽  
Vol 68 (5-6) ◽  
pp. 191-197 ◽  
Author(s):  
Birkan Açıkgöz ◽  
İskender Karaltı ◽  
Melike Ersöz ◽  
Zeynep M. Coşkun ◽  
Gülşah Çobanoğlu ◽  
...  

The present study explores the antimicrobial activity and cytotoxic effects in culture assays of two fruticose soil lichens, Cladonia rangiformis Hoffm. and Cladonia convoluta (Lamkey) Cout., to contribute to possible pharmacological uses of lichens. In vitro antimicrobial activities of methanol and chloroform extracts against two Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli), two Gram-positive bacteria (Enterococcus faecalis and Staphylococcus aureus), and the yeast Candida albicans were examined using the paper disc method and through determination of minimal inhibitory concentrations (MICs). The data showed the presence of antibiotic substances in the chloroform and the methanol extracts of the lichen species. The chloroform extracts exhibited more signifi cant antimicrobial activity than the methanol extracts. However, a higher antifungal activity was noted in the methanol extract of C. rangiformis. The maximum antimicrobial activity was recorded for the chloroform extract of C. convoluta against E. coli. The cytotoxic effects of the lichen extracts on human breast cancer MCF-7 cells were evaluated by the trypan blue assay yielding IC50 values of ca. 173 and 167 μg/ml for the extracts from C. rangiformis and C. convoluta, respectively.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Satish Balasaheb Nimse ◽  
Dilipkumar Pal ◽  
Avijit Mazumder ◽  
Rupa Mazumder

The amide derivatives of cinnamic acid were synthesized and their antimicrobial and antioxidant activities were investigated. The investigation of antimicrobial potentials of the compounds demonstrated a strong activity against 21 bacterial strains comprising Gram-positive and Gram-negative bacteria. Compounds2a,2b, and3bshowed strong antimicrobial activity against all microorganisms with the pMIC value ranging from 2.45 to 3.68. Compounds2a,3a, and3bdemonstrated strong antioxidant activity with % inhibition of the DPPH radical of 51% (±1.14), 41% (±1.01), and 50% (±1.23), respectively. These findings indicate that the amide derivatives of the cinnamic acid possess strong antibacterial and antioxidant activities.


2021 ◽  
Author(s):  
Mbarga Manga Joseph Arsene ◽  
Podoprigora Irina Viktorovna ◽  
Anytoulou Kitio Linda Davares ◽  
Mouafo Hippolyte Tene ◽  
Irma Aurelia Monique Manga ◽  
...  

Background and aim: The Cameroonian flora abounds in plants with multidimensional therapeutic virtues which can play an important role in the fight against resistance to antibiotics and the search for new antimicrobials. This study aimed to screen the antimicrobial potential of aqueous and ethanolic extracts of thirteen (13) samples (Bark, leaf, seed) of eight (8) plants from Cameroon against 3 reference pathogens and to evaluate their synergy with conventional antibiotics against eleven (11) multiresistant uropathogenic (MRU) bacteria. Method: Bioactive compounds were extracted from leaves of Leucanthemum vulgare, Cymbopogon citratus (DC.) Stapf, Moringa oleifera Lam and Vernonia amygdalina Delile; barks of Cinchona officinalis and Enantia chlorantha Oliv; barks and seeds of Garcinia lucida Vesque and leaves and seeds of Azadirachta indica (Neem) using distilled water and ethanol as solvents. The extracts were tested against Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 6538 and Candida albicans 10231 using the well diffusion method and the microdilution method. The synergistic effect was assessed (using disc diffusion method and the checkerboard method) against MRU bacteria namely Achromobacter xylosoxidans 4892, Citrobacter freundii 426, Enterococcus avium 1669, Escherichia coli 1449, Klebsiella oxytoca 3003, Kocuria rizophilia. 1542, Moraxella catarrhalis 4222, Morganella morganii 1543, Pseudomonas aeruginosa 3057, Staphylococcus aureus 1449 and Streptococcus agalactiae 3984. Results: We found that distilled water extracted a more important mass of phytochemical compounds (7.9-21.2%) compared to ethanol (5.8-12.4%). Except C. officinalis and G. lucida leaves, the rest of extracts were active with inhibition diameters (ID) ranging from 5 to 36 mm. Both ethanolic (EE) and aqueous extract (AE) of E. chloranta bark (ECB) were the most active against all pathogens with the mean ID of 17 and 36 mm vs S. aureus ATCC 6538, 23 and 14 mm vs E. coli ATCC 25922 and 36 and 19 mm vs C. albicans ATCC 10231. Only the EE of E. chloranta bark (ECB) had a strong activity against all the microorganisms tested (MIC <2 mg / ml); L. vulgare leaves (LVL) and G. lucida seed (GLS) had moderate (average MIC of 8 mg/ml) while all other extracts showed very weak antimicrobial activity. In addition, the fractional inhibitory concentration (FIC) ranged from 0.125 to 0.750. No antagonism (FIC> 4) or indifference (1≤ FIC≤4) was noted between the extracts and the antibiotics, but the best synergies were found with ECB which well-modulated Kanamycin (FIC = 0.125 against S. aureus and 0.250 against E. coli), nitrofurantoin (FIC = 0.250 against S. aureus and 0.188 against E. coli) and ampicillin (FIC = 0.125 against E. coli). Similarly, compared to other extracts, ECB, LVL and GLS also well-modulated ampicillin, ceftazidime, tetracycline, nitrofurantoin, and trimethoprim against all the above-mentioned resistant uropathogenic bacteria with important increase in fold area (IFA). Conclusion: This study show that E. chlorantha bark, L. vulgare leaves G. lucida seed, have good antimicrobial activity against both bacteria (Gram positive and Gram negative) and fungi (C. albicans); and should be more investigated for their possible use to the fight against MDR and MRU microorganisms.


Author(s):  
Nisheeth C. Desai ◽  
Darshita V. Vaja

We have synthesized novel series of N-(1-(2-(1-phenyl-3-(p-tolyl)-1H-pyrazol-4-yl)-5-(pyridin-4-yl)-1,3,4-oxadiazol-3(2H)-yl)ethylidene)arylaniline and their derivatives. The structures of synthesized compounds were well characterized by spectroscopic techniques. Antimicrobial activity of the newly synthesized derivatives was evaluated against gram positive (S. aureus and S. pyogenes), gram negative bacteria (E. coli and P. aeruginosa), and strains of fungi (C. albicans, A. niger and A. clavatus). Among the screened derivatives 5c, 5f, 5i, 5l and 5t demonstrated superior antimicrobial activity against microbial strains.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Paulina L. Páez ◽  
Claudia M. Bazán ◽  
María E. Bongiovanni ◽  
Judith Toneatto ◽  
Inés Albesa ◽  
...  

The prevalence of antibiotic resistance has resulted in the need for new approaches to be developed to combat previously easily treatable infections. The main aim of this work was to establish the potential of the syntheticα-diimine chromium(III) and ruthenium(II) complexes (where theα-diimine ligands are bpy = 2,2-bipyridine, phen = 1,10-phenanthroline, and dppz = dipyrido[3,2-a:2′,3′-c]-phenazine) like [Cr(phen)3]3+, [Cr(phen)2(dppz)]3+, [Ru(phen)3]2+, and [Ru(bpy)3]2+as antibacterial agents by generating oxidative stress. The [Cr(phen)3]3+and [Cr(phen)2(dppz)]3+complexes showed activity against Gram positive and Gram negative bacteria with minimum inhibitory concentrations (MICs) ranging from 0.125 μg/mL to 1 μg/mL, while [Ru(phen)3]2+and [Ru(bpy)3]2+do not exhibit antimicrobial activity against the two bacterial genera studied at the concentration range used. When ciprofloxacin was combined with [Cr(phen)3]3+for the inhibition ofStaphylococcus aureusandEscherichia coli, an important synergistic effect was observed, FIC 0.066 forS. aureusand FIC 0.064 forE. coli. The work described here shows that chromium(III) complexes are bactericidal forS. aureusandE. coli. Our results indicate thatα-diimine chromium(III) complexes may be interesting to open new paths for metallodrug chemotherapy against different bacterial genera since some of these complexes have been found to exhibit remarkable antibacterial activities.


Sign in / Sign up

Export Citation Format

Share Document