An Analysis of the Influence of Cutting Parameters on the Turning Process on the Fatigue Life of Aluminum Alloy UNS A92024-T351

2012 ◽  
Vol 498 ◽  
pp. 19-24 ◽  
Author(s):  
Alvaro Gómez ◽  
A. Sanz ◽  
Mariano Marcos Bárcena

Generally, metal structural elements of aircraft are placed in zones of critical load; in most cases, these elements are manufactured by machining processes. The fatigue life of these components is an important dynamic property that may be strongly affected by the surface condition produced during machining. In this paper a preliminary study of the influence of cutting parameters on fatigue strength of parts machined in aeronautical aluminum alloy UNS A92024-T351 has been carried out. Special attention has been provided to the relationship with surface finish evaluated through the roughness average.

Author(s):  
Prakash Chandra Gope ◽  
Harshit Kumar ◽  
Himanshu Purohit ◽  
Manish Dayal

In this study, the mechanical properties and fatigue life of 19501 aluminum alloy friction stir welded T-joint is investigated. Tensile properties of friction stir welded joint show that there is a marginal reduction of about 5% in strength and ductility as compared to unwelded 19501 aluminum alloy. Fatigue test results of T-joint specimen at two stress ratios of 0 and -1 show that there is a reduction of 15% in fatigue strength due to change of stress ratio from -1 to 0. Also, higher variation is seen in fatigue strength in low cycle zone than the high cycle zone. Effect of mean stress on fatigue life is discussed on the basis of different mean stress effect models. Morrow’s mean stress effect model is found to be better than other models. Micrographs from the fracture surfaces of retreating side, mid weld zone, and advancing side of the T-joint indicates that fracture surfaces are cleavage fracture. Different sizes of inter-metallic bonding are seen in the micrographs, which indicate that fracture is initiated due to breaking of the brittle inter-metallic bonding.


2014 ◽  
Vol 1082 ◽  
pp. 403-407 ◽  
Author(s):  
Hong Huang ◽  
Qing Yun Zhao ◽  
Feng Lei Liu

Split-sleeve cold expansion processing was employed on the 7050-T7451 aluminum alloy plate. Fatigue lives were compared according different expansion, then the relationship of fatigue life and expansion was analyzed. Residual stresses were measured with different expansion, and the fatigue fractograph was analyzed by SEM. The results show that the split-sleeve cold expansion can obtain longer life compared with the non-strengthen hole. When over the optimum expansion, fatigue life began to decrease. The maximum fatigue life increased to 2.92 times with 4.1% expansion. The maximum values of radial residual stresses grew with expansion. The depths of residual compressive stresses were more than 6mm with 2.6% and 4.1% expansion. The fatigue fractograph shows mixed transgranular fracture.


1985 ◽  
Vol 107 (3) ◽  
pp. 214-220 ◽  
Author(s):  
T. Shimokawa ◽  
Y. Hamaguchi

The objective of this study is to identify the most closely related variable to the distribution of fatigue life in unnotched and three kinds of notched 2024-T4 aluminum alloy specimens. Carefully designed fatigue tests under a constant temperature and humidity condition provided fatigue life distributions over a wide range of stress amplitude. This study used about 1000 specimens. On the basis of the test results, the dependence of the scatter in fatigue life on notch configuration, the period to crack initiation, the level of stress amplitude, the median fatigue life, and the slope of the median S-N curve is investigated, and the relationship between the distributional form of fatigue life and the shape of the median S-N curve is discussed. It is concluded that the slope and shape of the median S-N curve in the vicinity of the test stress level are closely related to the scatter and distributional form of fatigue life respectively. This is common to the unnotched and three kinds of notched specimens. A variability hypothesis to correlate the median S-N curve with fatigue life distributions is examined.


2011 ◽  
Vol 175 ◽  
pp. 347-351
Author(s):  
Bao Xing Zhang ◽  
Bin Lin ◽  
Zhi Lin Han ◽  
Lei Zhang

Optimization of the cutting parameters is one of the most important contents in diamond turning process of the thin-walled tube of high strength aluminum alloy. Cutting conditions have an influence on reducing the production time and deciding the quality of the final workpiece. This paper proposes an optimization technique based on genetic algorithms (GA) for the determination of the cutting parameters. As the experimental results show, it is very efficient that the proposed genetic algorithm-based procedure for solving this problem.


This paper presents the optimization in machining processes on the cutting parameters for the S45C in turning process using the response surface method (RSM). The experimental work conducted investigates the influence of cutting parameters on statistical analysis of signals and surface quality. The paper also presents a statistical analysis of signal processing. The cutting force was measured during machining using the Kistler 9129AA dynamometer to monitor the force signals and the data was analyzed using the I-kazTM method of statistical analysis. This statistical analysis was used to assess the effect of force signals during the machining process. The RSM models for Ra and Rz, and Ideveloped with ANOVA and multiple regression equations. The models also were compared and validated with the predicted and measured of Ra and Rz values, and I-kaz coefficients. The optimal configuration of cutting parameters was observed at 200 m/min, 0.1 mm/rev and 0.521 mm with desirability of 95.9%. It is observed that the models developed are suggested to be utilized for predicting surface roughness values and I-kaz coefficients for the machining of S45C steel.


2021 ◽  
Vol 45 (3) ◽  
pp. 207-215
Author(s):  
Zhenduo Sun ◽  
Dongbo Hou ◽  
Wei Li

The work aims to study the influence of carburizing and nitriding on fatigue properties of 18Cr2Ni4WA high strength steel in very high cycle fatigue regime. Very high cycle fatigue tests were carried out on 18Cr2Ni4WA Steel after carburizing and nitriding respectively. The micro morphology of fatigue fracture was observed by scanning electron microscope, the failure mode and failure mechanism were discussed. The relationship between fatigue life and defect size, FGA size, fish eye size of fracture was analyzed. The characteristic size of defects is evaluated by Gumbel, Weibull and GEV distribution functions, and a modified Akiniwa fatigue life prediction model considering the relationship between FGA size and inclusion size was established. The results showed that, nitriding and carburizing treatment improve the surface fatigue limit of the steel. The fatigue life decreases with the increase of internal defect size and FGA size. After carburizing and nitriding treatment, the internal fatigue strength of the specimen decreases slightly. When the failure probability is 99%, the internal defect sizes of nitrided specimens calculated by Weibull, Gumbel and GEV distributions are 141.5 μm, 148.4 μm and 211.7 μm respectively. The calculated internal defect sizes of carburized specimens are 47 μm, 67.8 μm and 40 μm respectively. Compared with the experimental data, the fatigue strength predicted by GEV is the most appropriate. carburizing and nitriding treatment can improve the surface fatigue strength of 18Cr2Ni4WA steel, but slightly reduce the internal fatigue strength. The prediction result of the new model is conservative when the failure probability is 99%, which is suitable for engineering application.


2015 ◽  
Vol 808 ◽  
pp. 15-20
Author(s):  
Adrian Trif ◽  
Marian Borzan ◽  
Alexandru Popan ◽  
Domniţa Fraţilă ◽  
Adriana Rus ◽  
...  

The main purpose of this paper is to analyze the influence of cutting regime parameters in case of dry turning of an aluminum alloy. For turning process of the aluminum alloy was used Sandvik insert DCGX 11 T3 08 Al H10. The influence of the main cutting parameters on the surface quality was analyzed using a statistical method (ANOVA) used to test differences between two or more means. Based on a mathematical model can be calculated the surface roughness taking into account the cutting speed, the feed rate and the depth of cutting.


Author(s):  
Junling Fan ◽  
Xinglin Guo ◽  
Yanguang Zhao

An energetic method is proposed to rapidly evaluate the macro- and microfatigue behavior of aluminum alloy in high-cycle fatigue. The theoretical correlation between the thermal signal and the energy dissipation during the fatigue process is established for the irreversible dissipation mechanism description. The energetic method is applied to predict the fatigue strength and the entire fatigue life of the aluminum alloy. Moreover, the energy dissipation is properly used to evaluate the microplastic behavior at the grain scale, which is responsible for the progressive movements of the internal microstructures. Experiments were carried out to validate the current energetic method, and good agreement was obtained between the predicted results and the traditional results. Thus, the current energetic method is confirmed to be promising for the macro and micro high-cycle fatigue behavior assessment.


Sign in / Sign up

Export Citation Format

Share Document