Effect of Detoxification of Natural Drying Steam Exploded Corn Straw with Organic Solvent on Enzymatic Hydrolysis and Ethanol Fermentation

2012 ◽  
Vol 512-515 ◽  
pp. 379-383
Author(s):  
Xian Chun Jin ◽  
An Dong Song ◽  
Tong Fu Su ◽  
Bia Liang Zhang

Corn straw from steam-explosion treatment process was treated with different organic solvents to reduce the inhibition for the sequent enzymatic hydrolysis and fermentation. The detoxified substrates (100 g DW/L) were hydrolyzed with a blend of Novozym 188 (15 IU/g cellulose), Celluclast CP cellulase (15 FPU/g cellulose) and lignase (15 IU/g hemicellulose). The reducing sugar was bio-converted to ethanol with separated hydrolysis and fermentation processes using Pachysolen tannophilus P-01. The reducing sugar yield varied from 34.8 to 89.7% depending on the detoxification solvents and modes. The highest ethanol yield (96.1% of theoretical value) was obtained with the combined extraction of ether and acetone.

BioResources ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. 7002-7015
Author(s):  
Weiwei Huang ◽  
Erzhu Wang ◽  
Juan Chang ◽  
Ping Wang ◽  
Qingqiang Yin ◽  
...  

Straw lignocelluloses were converted to reducing sugar for possible use for bioenergy production via physicochemical pretreatments and enzymatic hydrolysis. The experiment was divided into 2 steps. The first step focused on breaking the crystal structure and removing lignin in corn straw. The lignin, hemicellulose, and cellulose degradation rates observed were 92.2%, 73.7%, and 4.6%, respectively, after corn straw was treated with sodium hydroxide (3% w/w) plus high-pressure steam (autoclave), 74.8%, 72.5%, and 4.3% after corn straw was treated with sodium hydroxide (8%, w/w) plus wet steam explosion, compared with native corn straw (P < 0.05). The second step was enzymatic hydrolysis for the pretreated straw. The enzymatic hydrolysis could yield 576 mg/g reducing sugar and significantly degrade cellulose and hemicellulose contents by 93.3% and 94.4% for the corn straw pretreated with sodium hydroxide plus high-pressure steam. For the corn straw pretreated with sodium hydroxide plus wet steam explosion, the enzymatic hydrolysis could yield 508 mg/g reducing sugar, and degrade cellulose and hemicellulose contents by 83.5% and 84.2%, respectively, compared with the untreated corn straw (P<0.05). Scanning electron microscopy showed that the physicochemical pretreatments plus enzymatic hydrolysis degraded corn straw to many small molecules. Thus, physicochemical pretreatments plus enzymatic hydrolysis converted lignocellulose to reducing sugar effectively.


2019 ◽  
Vol 964 ◽  
pp. 145-150
Author(s):  
Anastasia Sandra Dewi ◽  
Richie Andyllo Stevanus ◽  
Maria Amelia Sandra ◽  
Dennis Farina Nury ◽  
Lily Pudjiastuti ◽  
...  

In this study the effect of mixed culture of Zymomonasmobilis and Pichia stipitis to produce bioethanol from Solid Waste Arenga pinnata (SWAP) was investigated. The fermentation liquid substrate was resulted from an integrated process of pretreatment and enzymatic hydrolysis. Combination of diluted acid and ethanol organosolv pretreatment was used to increase the SWAP lignin removal. Raw pretreatment was used to decrease the SWAP particle size to 200 mesh. Acid pretreatment was done using 5% (v/v) diluted sulfate acid. Acid pretreated SWAP was treated for 65 min with organosolv pretreatment. Enzymatic hydrolysis by a combination of cellulase and xylanase was done for 48 h to convert cellulose into reducing sugar. The surfactants (Tween 80) addition was done to increase the sugar yield of the hydrolysis process. Fermentation variable consist of single culture of Z. mobilis as the control and mixed culture of Z. mobilis and P. stipitis, the microorganisms used to convert glucose and xylose into ethanol. The number of inoculum used in this experiment was more than 1.4 billion cells and the duration of fermentation process was 72 h. The delignification process decreased 95.43% lignin in SWAP. X-ray Diffraction (XRD) analysis assay showed an increase of crystallinity index of SWAP with pretreatment combination to 37.87%. Enzymatic hydrolysis by a combination of cellulase and xylanase with the addition of Tween 80 produced 9.16 gr glucose/L reducing sugar concentration. The highest ethanol resulted by fermentation process using mixed culture of Z. mobilis and P. stipitis with 0.33% (v/v) ethanol concentration and 0.57 (g ethanol/g reducing sugar) ethanol yield. Fermentation process using single culture Z. mobilis resulted 0.28% (v/v) ethanol concentration, and 0.48 (g ethanol/g reducing sugar) ethanol yield. The mixed culture fermentation with Z. mobilis and P. stipitis resulted ethanol yield 19 % higher than the single culture fermentation using Z. mobilis.


Bionatura ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 1490-1500
Author(s):  
Jose F. Alvarez-Barreto ◽  
Fernando Larrea ◽  
Maria C. Pinos C ◽  
Jose Benalcázar ◽  
Daniela Oña ◽  
...  

Cocoa pod shell is an essential agricultural residue in Ecuador, and this study addressed its potential valorization for bioethanol production. For this, three types of pretreatments, acid, alkaline, and autohydrolysis, were applied to pod shells from two different cocoa types, national and CCN-51. to remove the lignin. Untreated and treated biomasses were characterized by composition, thermal stability, Fourier transformed infrared spectroscopy (FITR), and scanning electron microscopy (SEM). The treated biomass was then enzymatically hydrolyzed with cellulase. Reducing sugars were quantified after pretreatments and enzymatic hydrolysis, and the pretreatment liquors and the enzymatic hydrolysates were subjected to alcoholic fermentation with Saccharomyces cerevisiae. There were substantial differences in composition between both biomasses, particularly in lignin content, with national cocoa having the lowest values. All pretreatment conditions had significant effects on biomass composition, structure, and thermal properties. After alkaline pretreatment, the biomass presented the highest cellulose and lowest lignin contents, resulting in the highest reducing sugar concentration in the pretreatment liquor. The highest lignin content was found after the acid pretreatment, which resulted in low, reducing sugar concentrations. Autohydrolysis produced similar results as the acid pretreatment; however, it resulted in the highest sugar concentration after enzymatic hydrolysis, while the acid-treated sample had negligible levels. After fermentation, there were no differences in productivity among the pretreatment liquors, but autohydrolysis had the largest ethanol yield. In the hydrolysates, it was also autohydrolysis that resulted in higher productivity and yield. Thus, there is an indication of the formation of inhibitors, both enzymatic activity and ethanol production, in the acid and alkaline pretreatments, and this should be tackled in future research. Nonetheless, given the crucial changes observed in biomass, we believe that cocoa pod shell pretreatment has potential for the generation of reducing sugars that could be further used in different bioprocesses, nor only bioethanol production.


2013 ◽  
Vol 14 (2) ◽  
pp. 118-124 ◽  

Olive oil mill solid residue (OMSR) is the solid waste generated during olive oil production process in three-phase olive mills. It consists of the remaining pulp of olive processing after the extraction of oil, as well as the cracked seeds of the olive fruits, containing thus mainly lignocellulose and residual oil. The commonly used practice for OMSR management is combustion, after having extracted the residual oil by secondary extraction using organic solvents. Other proposed ways of OMSR management are their exploitation as substrate for edible fungi production and compost, and as feedstock for biofuels generation such as methane and bioethanol. In the latter case, the complex carbohydrates (cellulose and hemicellulose) of the lignocellulose of OMSR have to be degraded towards their simple sugars and further fermented via microorganisms. The purpose of the present study was to investigate the effect of thermochemical pre-treatment of OMSR, on the final ethanol yield from the yeast Pachysolen tannophilus. Nine different types of OMSR-based substrates were tested i.e. raw OMSR, hydrolysates generated from pretreated OMSR with NaOH (0.5 %, 1.5 % w/v) and H2SO4 (0.5 %, 1.5 % v/v), and pretreated OMSR with NaOH (0.5 %, 1.5 % w/v) and H2SO4 (0.5 %, 1.5 % v/v) whole biomass. It was shown that in all cases pretreatment enhanced the consumption of carbohydrates as well as ethanol final yields.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 507
Author(s):  
Eduardo Troncoso-Ortega ◽  
Rosario del P. Castillo ◽  
Pablo Reyes-Contreras ◽  
Patricia Castaño-Rivera ◽  
Regis Teixeira Mendonça ◽  
...  

The objective of this study was to investigate structural changes and lignin redistribution in Eucalyptus globulus pre-treated by steam explosion under different degrees of severity (S0), in order to evaluate their effect on cellulose accessibility by enzymatic hydrolysis. Approximately 87.7% to 98.5% of original glucans were retained in the pre-treated material. Glucose yields after the enzymatic hydrolysis of pre-treated material improved from 19.4% to 85.1% when S0 was increased from 8.53 to 10.42. One of the main reasons for the increase in glucose yield was the redistribution of lignin as micro-particles were deposited on the surface and interior of the fibre cell wall. This information was confirmed by laser scanning confocal fluorescence and FT-IR imaging; these microscopic techniques show changes in the physical and chemical characteristics of pre-treated fibres. In addition, the results allowed the construction of an explanatory model for microscale understanding of the enzymatic accessibility mechanism in the pre-treated lignocellulose.


Author(s):  
Yohanita Restu Widihastuty ◽  
Sutini Sutini ◽  
Aida Nur Ramadhani

Pineapple leaf waste is one agricultural waste that has high cellulose content. Pineapple leaf waste's complex structure contains a bundle of packed fiber that makes it hard to remove lignin and hemicellulose structure, so challenging to produce reducing sugar. Dried pineapple leaf waste pretreated with a grinder to break its complex structure. Delignification process using 2% w/v NaOH solution at 87oC for 60 minutes has been carried out to remove lignin and hemicellulose structure so reducing sugar could be produced. Delignified pineapple leaf waste has been enzymatic hydrolyzed using cellulase enzyme (6 mL, 7 mL, and 8 mL) to produce reducing sugar. The sample was incubated in an incubator shaker at 155 rpm at 45, 55, and 60oC for 72 hours. Determination of reducing sugar yield had been carried out using the Dubois method and HPLC. The model indicated that the optimum operating condition of enzymatic hydrolysis is 7 mL of cellulase enzyme at 55oC to produce 96,673 mg/L reducing sugar. This result indicated that the enzymatic hydrolysis operating condition improved the reducing sugar yield from pineapple leaf waste. The optimum reducing sugar yield can produce biofuel by the saccharification process.


Sign in / Sign up

Export Citation Format

Share Document