Borehole Stability Analysis and its Application in Xujiahe Formation of ZJ Block

2012 ◽  
Vol 524-527 ◽  
pp. 1359-1362
Author(s):  
Kan Hua Su ◽  
Hong Liu ◽  
Jun Wang

The mainly borehole problems are sticking (collapse) and circulation loss in Xujiahe formation of ZJ block, so the drilling rate is very low. In order to improve the penetration of rate of ZJ block, the rock mechanical test method, ground stress test method, well history statistics method, and logging data analysis method were adopted. The borehole stability mechanism of xujiahe formation was analyzed. Combined with the drilling fluid experimental evaluation, the measures of improve wellbore stability of xujiahe formation was Proposed. Field application tests show that, the borehole problems and its processing time are greatly reduced using those proposed measures. The penetration of rate in the Xujiahe formation of test well increased 20-30%, and the application effect is obvious.

2014 ◽  
Vol 574 ◽  
pp. 214-218
Author(s):  
Hao Yong Huang ◽  
Yuan Fang Cheng ◽  
Wei Zhao ◽  
Chong Cheng ◽  
Wen Biao Deng

Based on the size effect of rock strength, the borehole stability analysis model is established, which the borehole size is taken into consideration. Through this model, the relation between borehole size and collapse pressure under borehole pressure, ground stress and drilling fluid flow function is analyzed. The analysis shows that with the increase of borehole diameter, collapse pressure increases significantly, and borehole stability becomes poor, but the variation of borehole size is not proportional to collapse pressure: the bigger the borehole, the smaller the variation. When borehole diameter increases from 152.4 mm to 444.5 mm, wellbore collapse pressure increases from 1.18g/cm3 to 1.315g/cm3 and the rate of the increase is 11.44%. When slimhole drilling technology is applied, the density of minimum fluid that maintains wellbore stability is lower than the one used in conventional wellbore drilling.


2011 ◽  
Vol 402 ◽  
pp. 709-714 ◽  
Author(s):  
Pei Yang ◽  
Mian Chen ◽  
Yan Jin ◽  
Bing Hou ◽  
Kang Qiu ◽  
...  

The Jabung oilfield in Indonesia is characterized by complex geological structural movement, large tectonic stress and high temperature gradient. Accidents such as borehole collapse and sticking were frequently encountered when drilling shale formations, which often result in serious damage. In this paper, a series of experiments were conducted to evaluate the performance of shale in drilling fluid, including linear expansion rate evaluation tests and rolling recovery evaluation tests. Also X-ray diffraction was used to analyze the mineral composition of shale. The mechanical parameters of shale were obtained through statistical analysis. By using ABAQUS software, the temperature difference induced by thermal stress distribution was analyzed. After that, the borehole stress distribution was determined by coupling the additional stress with in-situ stress. Finally, based on borehole stability mechanical models, the effects of well trajectory on borehole stability were analyzed. We found that the chemical properties of drilling fluid, wellbore trajectory and temperature has a great influence on wellbore stability, and the impact of temperature changes and of well trajectory are the largest factor.


2014 ◽  
Vol 5 (1) ◽  
pp. 260-270
Author(s):  
Khoshniyat A ◽  
Shojaei M. ◽  
Jarahian K. ◽  
Mirali M. ◽  
Ghorashi S. ◽  
...  

A new experimental model was developed to predict the role of special polymeric additives, in the drilling fluid formulation, on the wellbore stability in shale formation. The shale formation was regarded as a non-ideal membrane and the effects of various characteristics of the added polymers were studied on the membrane reflection coefficient. The model was applied to unique field data from the oil field in south of Iran, including clay structure, cation exchange capacity (CEC), density and porosity of the shale. The results, using various polyglycols and polyacrylamides as the polymeric additive, showed that the structure of the polymeric chains e.g. type and content of ionic segments had significant effect on their adsorption mechanism and its strength.  It was concluded that increasing the molecular weight of the polymer chains decreased the rate and amount of the adsorption due to the increasing of the entanglements between the chains which in turn limited their mobility. So, adsorption of the polymeric material on the shale had significant impress on its performance as a membrane by increasing the shale reflection coefficient enhancing its stability during drilling process. Finally, the developed model results were in good agreement by experimental test results which was done in a specific shale stability set up.


2012 ◽  
Vol 616-618 ◽  
pp. 720-725
Author(s):  
Qiang Tan ◽  
Jin Gen Deng ◽  
Bao Hua Yu

Reservoir pressure will decline generally along with production in the oil and gas development process. There are some problems such as borehole collapse or reduced diameter and lost circulation in drilling of initial production stage in unconsolidated sandstone. As the formation pressure declines the stress around borehole changes, and then collapse pressure and fracture pressure are affected. Especially in directional wells, variation of wellbore stability is more complex with different borehole deviation and azimuth. The calculation models of collapse and fracture pressure in depleted reservoirs were established, and relevant data in unconsolidated sand reservoir of an oilfield in Bohai Sea was used to calculate collapse pressure and fracture pressure of directional wells in the condition of pressure depletion before and after. The results showed that collapse and fracture pressure decreased as formation pressure depletion, and safe drilling fluid density window was wider when drilled to the direction of minimum horizontal principle stress. The calculation results can be reference to drilling design of adjustment wells in unconsolidated sandstones.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fan Zhang ◽  
Houbin Liu ◽  
Yingfeng Meng ◽  
Shuai Cui ◽  
Haifeng Ye

The hard and brittle shale formation is prone to collapse and instability, and the penetration of drilling fluid along the bedding reduces the mechanical properties of rock near the borehole wall, resulting in serious downhole accidents. Therefore, in this paper, the geomechanical parameters of the reservoir in the Longmaxi formation of Jiaoshiba were determined by field hydraulic fracturing and laboratory experiments. Then, the stress distribution model of borehole wall under the condition of underbalanced seepage flow is established based on the experimental results obtained by mechanical experiments on underground cores. The instability zone of borehole wall under the condition of underbalance is calculated and analyzed. The results show that the two-way horizontal ground stress of the Longmaxi formation is higher than 2.2 MPa/100 m, and the original ground stress is high. Moreover, the mechanical parameters of the stratified shale stratum matrix and weak surface are significantly different. The cohesion (4.7 MPa) and the angle of internal friction (26.9°) of bedding plane are significantly lower than that of the matrix (7.77 MPa) and the angle of internal friction (46.7°). Hard and brittle shale is easy to be destroyed along the stratification. Under the condition of underbalanced seepage, the mechanical properties of borehole shale can be stable. It is found that when the borehole axis is vertically stratified, the collapse pressure is the lowest, while in other drilling directions, the drilling fluid density needs to be increased by 0.5 g/cm3 to maintain the borehole stability. With the increase of the inclination angle of bedding plane, the wall failure area increases. The results of this study can provide guidance and suggestions for drilling in Jiaoshiba block and other permeable hard and brittle shale formations.


2014 ◽  
Vol 989-994 ◽  
pp. 903-907
Author(s):  
Li Yang Song ◽  
Li Jia Xiao ◽  
Ji Wei Wang ◽  
Jin Zhang ◽  
Tian Lin Zhuang

This paper studied the borehole stability in Liulin bituminous core reservoirs during under-balanced drilling. The equivalent depth method was applied to study the formation pore pressure. The floor drain test method was applied to study the ground stress. Core strength experiments combined with logging data were used in the establishment of core strength predicting model. Mechanics analysis model was founded to study the borehole stability in the core reservoir. According to the studying and analyzing results, the under-balance drilling in Liulin coal reservoirs enjoys good borehole stability.


2021 ◽  
Author(s):  
Chen Hongbo ◽  
Okesanya Temi ◽  
Kuru Ergun ◽  
Heath Garett ◽  
Hadley Dylan

Abstract Recent studies highlight the significant role of drilling fluid elasticity in particle suspension and hole cleaning during drilling operations. Traditional methods to quantify fluid elasticity require the use of advanced rheometers not suitable for field application. The main objectives of the study were to develop a generalized model for determining viscoelasticity of a drilling fluid using standard field-testing equipment, investigate the factors influencing drilling fluid viscoelasticity in the field, and provide an understanding of the viscoelasticity concept. Over 80 fluid formulations used in this study included field samples of oil-based drilling fluids as well as laboratory samples formulated with bentonite and other polymers such as partially-hydrolyzed polyacrylamide, synthesized xanthan gum, and polyacrylic acid. Detailed rheological characterizations of these fluids used a funnel viscometer and a rotational viscometer. Elastic properties of the drilling fluids (quantified in terms of the energy required to cause an irreversible deformation in the fluid's structure) were obtained from oscillatory tests conducted using a cone-and-plate type rheometer. Using an empirical approach, a non-iterative model for quantifying elasticity correlated test results from a funnel viscometer and a rotational viscometer. The generalized model was able to predict the elasticity of drilling fluids with a mean absolute error of 5.75%. In addition, the model offers practical versatility by requiring only standard drilling fluid testing equipment to predict viscoelasticity. Experimental results showed that non-aqueous fluid (NAF) viscoelasticity is inversely proportional to the oil-water ratio and the presence of clay greatly debilitates the elasticity of the samples while enhancing their viscosity. The work efforts present a model for estimating drilling fluid elasticity using standard drilling fluid field-testing equipment. Furthermore, a revised approach helps to describe the viscoelastic property of a fluid that involves quantifying the amount of energy required to irreversibly deform a unit volume of viscoelastic fluid. The methodology, combined with the explanation of the viscoelasticity concept, provides a practical tool for optimizing drilling operations based on the viscoelasticity of drilling fluids.


2021 ◽  
Author(s):  
Jitong Liu ◽  
Wanjun Li ◽  
Haiqiu Zhou ◽  
Yixin Gu ◽  
Fuhua Jiang ◽  
...  

Abstract The reservoir underneath the salt bed usually has high formation pressure and large production rate. However, downhole complexities such as wellbore shrinkage, stuck pipe, casing deformation and brine crystallization prone to occur in the drilling and completion of the salt bed. The drilling safety is affected and may lead to the failure of drilling to the target reservoir. The drilling fluid density is the key factor to maintain the salt bed’s wellbore stability. The in-situ stress of the composite salt bed (gypsum-salt -gypsum-salt-gypsum) is usually uneven distributed. Creep deformation and wellbore shrinkage affect each other within layers. The wellbore stability is difficult to maintain. Limited theorical reference existed for drilling fluid density selection to mitigate the borehole shrinkage in the composite gypsum-salt layers. This paper established a composite gypsum-salt model based on the rock mechanism and experiments, and a safe-drilling density selection layout is formed to solve the borehole shrinkage problem. This study provides fundamental basis for drilling fluid density selection for gypsum-salt layers. The experiment results show that, with the same drilling fluid density, the borehole shrinkage rate of the minimum horizontal in-situ stress azimuth is higher than that of the maximum horizontal in-situ stress azimuth. However, the borehole shrinkage rate of the gypsum layer is higher than salt layer. The hydration expansion of the gypsum is the dominant reason for the shrinkage of the composite salt-gypsum layer. In order to mitigate the borehole diameter reduction, the drilling fluid density is determined that can lower the creep rate less than 0.001, as a result, the borehole shrinkage of salt-gypsum layer is slowed. At the same time, it is necessary to improve the salinity, filter loss and plugging ability of the drilling fluid to inhibit the creep of the soft shale formation. The research results provide technical support for the safe drilling of composite salt-gypsum layers. This achievement has been applied to 135 wells in the Amu Darya, which completely solved the of wellbore shrinkage problem caused by salt rock creep. Complexities such as stuck string and well abandonment due to high-pressure brine crystallization are eliminated. The drilling cycle is shortened by 21% and the drilling costs is reduced by 15%.


2021 ◽  
Author(s):  
Anna Vladimirovna Norkina ◽  
Sergey Mihailovich Karpukhin ◽  
Konstantin Urjevich Ruban ◽  
Yuriy Anatoljevich Petrakov ◽  
Alexey Evgenjevich Sobolev

Abstract The design features and the need to use a water-based solution make the task of ensuring trouble-free drilling of vertical wells non-trivial. This work is an example of an interdisciplinary approach to the analysis of the mechanisms of instability of the wellbore. Instability can be caused by a complex of reasons, in this case, standard geomechanical calculations are not enough to solve the problem. Engineering calculations and laboratory chemical studies are integrated into the process of geomechanical modeling. The recommendations developed in all three areas are interdependent and inseparable from each other. To achieve good results, it is necessary to comply with a set of measures at the same time. The key tasks of the project were: determination of drilling density, tripping the pipe conditions, parameters of the drilling fluid rheology, selection of a system for the best inhibition of clay swelling.


SPE Journal ◽  
2021 ◽  
pp. 1-11
Author(s):  
Igor Ivanishin ◽  
Hisham A. Nasr-El-Din ◽  
Dmitriy Solnyshkin ◽  
Artem Klyubin

Summary High-temperature (HT) deep carbonate reservoirs are typically drilled using barite (BaSO4) as a weighting material. Primary production in these tight reservoirs comes from the network of natural fractures, which are damaged by the invasion of mud filtrate during drilling operations. For this study, weighting material and drilling fluid were sampled at the same drillsite. X-ray diffraction (XRD) and X-ray fluorescence analyses confirmed the complex composition of the weighting material: 43.2 ± 3.8 wt% of BaSO4 and 47.8 ± 3.3 wt% of calcite (CaCO3); quartz and illite comprised the rest. The drilling fluid was used to form the filter cake in a high-pressure/high-temperature (HP/HT) filter-press apparatus at a temperature of 300°F and differential pressure of 500 psig. Compared with the weighting material, the filter cake contained less CaCO3, but more nondissolvable minerals, including quartz, illite, and kaolinite. This difference in mineral composition makes the filter cake more difficult to remove. Dissolution of laboratory-grade BaSO4, the field sample of the weighting material, and drilling-fluid filter cake were studied at 300°F and 1,000 to 1,050 psig using an autoclave equipped with a magnetic stirrer drive. Two independent techniques were used to investigate the dissolution process: analysis of the withdrawn-fluid samples using inductively coupled plasma-optical emission spectroscopy, and XRD analysis of the solid material left after the tests. The dissolution efficiency of commercial K5-diethylenetriaminepentaacetic acid (DTPA), two K4-ethylenediaminetetraacetic acid (EDTA), Na4-EDTA solutions, and two “barite dissolvers” of unknown composition was compared. K5-DTPA and K4-EDTA have similar efficiency in dissolving BaSO4 as a laboratory-grade chemical and a component of the calcite-containing weighting material. No pronounced dissolution-selectivity effect (i.e., preferential dissolution of CaCO3) was noted during the 6-hour dissolution tests with both solutions. Reported for the first time is the precipitation of barium carbonate (BaCO3) when a mixture of BaSO4 and CaCO3 is dissolved in DTPA or EDTA solutions. BaCO3 composes up to 30 wt% of the solid phase at the end of the 6-hour reaction, and can be dissolved during the field operations by 5 wt% hydrochloric acid. Being cheaper, K4-EDTA is the preferable stimulation fluid. Dilution of this chelate increases its dissolution efficiency. Compared with commonly recommended solutions of 0.5 to 0.6 M, a more dilute solution is suggested here for field application. The polymer breaker and K4-EDTA solution are incompatible; therefore, the damage should be removed in two stages if the polymer breaker is used.


Sign in / Sign up

Export Citation Format

Share Document