Effect of Braided Structure on Mechanical Properties of Cf/SiC Composites

2012 ◽  
Vol 538-541 ◽  
pp. 423-426
Author(s):  
De Ke Zhang ◽  
Ying Bin Cao ◽  
Rong Jun Liu ◽  
Ya Nan Jiao

Using polycarbosilane(PCS) as precursor materials, 2.5D、3D3d、3D4d、3D5d braided structure Cf/SiC composites were prepared by Precursor Infiltration and Pyrolysis (PIP). The result showed that different braided structure Cf/SiC composites had dissimilar change tendency of density and porosity. The braided structure and pore position influenced mechanical properties of Cf/SiC composites obviously. 2.5D Cf/SiC composites had the lowest mechanical properties compared others braided structure via PIP process, 3D5d Cf/SiC composites had the highest mechanical properties for the bending strength reached 334MPa, modulus 99.5GPa. Furthermore, the microstructure and properties of different braided structure Cf/SiC composites has been investigated by means of SEM.

2012 ◽  
Vol 723 ◽  
pp. 353-357
Author(s):  
Guo Jun Zhang ◽  
Zhi Ping Sun ◽  
Li Yan Zou

The microstructure and mechanical properties of samples were examined, and the relationship of structure and mechanical properties for VC/Fe composite sintered at different holding time were studied. Holding time can influence the mechanical properties, with the holding time rising, when the holding time is 80 min, the hardness is Max, it’s 10.71 GPa, the enhancing range is 37.66%; The relative density changes slower from 60 to 100 min; when the holding time is 60 minutes, fracture toughness and bending strength of material is 16.17 MPa•m 1/2 and 1070 MPa, it’s better than before.


2016 ◽  
Vol 697 ◽  
pp. 467-471 ◽  
Author(s):  
Ming Hao Fang ◽  
Zhao Hui Huang ◽  
Yan Gai Liu ◽  
Xin Min ◽  
Li Na Zhang

Sialon-SiC composite powders were synthesized from kyanite tailings through the carbothermal reduction nitridation (CRN) technique. Using Sialon-SiC composites to substitute Si3N4 composites via the CRN technique synthesize Sialon/Si3N4-SiC composite refractories. The phase composition, cross section morphology, and the substituent amount of Sialon-SiC composites impact on refractories mechanical properties were investigated, respectively. The optimized synthesis temperature for the CRN reaction was found to be 1550 °C for 4 h with the excess carbon 20%. The substituent amount of Sialon-SiC was 25%, the mechanical properties of Sialon/Si3N4-SiC composite refractories reached optimal performance, which bending strength value was 41.8 MPa and compression strength value was 61.6 MPa.


2012 ◽  
Vol 184-185 ◽  
pp. 850-853
Author(s):  
Jun Ming Luo ◽  
Ji Lin Xu ◽  
Zheng Wei

WC steel-bonded cemented carbides were prepared by microwave sintering through ball milling, press forming and sintering with iron powders as the matrix, WC particles as the reinforcements. The effect of WC contents on microstructure and properties of steel-bonded cemented carbide was studied. The results show that the steel-bonded cemented carbide sintered at 1280 °C is considered as a liquid phase sintering and Fe7W6, Fe2W2C and Fe6W6C new phases are generated during the sintering process. The relative density, microhardness and bending strength of the steel-bonded cemented carbide increase with increasing the WC contents. Moreover, the mechanical properties of steel-bonded cemented carbide are obviously improved after heat treatment.


2020 ◽  
pp. 39-48
Author(s):  
B. O. Bolshakov ◽  
◽  
R. F. Galiakbarov ◽  
A. M. Smyslov ◽  
◽  
...  

The results of the research of structure and properties of a composite compact from 13 Cr – 2 Мо and BN powders depending on the concentration of boron nitride are provided. It is shown that adding boron nitride in an amount of more than 2% by weight of the charge mixture leads to the formation of extended grain boundary porosity and finely dispersed BN layers in the structure, which provides a high level of wearing properties of the material. The effect of boron nitride concentration on physical and mechanical properties is determined. It was found that the introduction of a small amount of BN (up to 2 % by weight) into the compacts leads to an increase in plasticity, bending strength, and toughness by reducing the friction forces between the metal powder particles during pressing and a more complete grain boundary diffusion process during sintering. The formation of a regulated structure-phase composition of powder compacts of 13 Cr – 2 Mо – BN when the content of boron nitride changes in them allows us to provide the specified physical and mechanical properties in a wide range. The obtained results of studies of the physical and mechanical characteristics of the developed material allow us to reasonably choose the necessary composition of the powder compact for sealing structures of the flow part of steam turbines, depending on their operating conditions.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 220
Author(s):  
Petar Antov ◽  
Viktor Savov ◽  
Ľuboš Krišťák ◽  
Roman Réh ◽  
George I. Mantanis

The potential of producing eco-friendly, formaldehyde-free, high-density fiberboard (HDF) panels from hardwood fibers bonded with urea-formaldehyde (UF) resin and a novel ammonium lignosulfonate (ALS) is investigated in this paper. HDF panels were fabricated in the laboratory by applying a very low UF gluing factor (3%) and ALS content varying from 6% to 10% (based on the dry fibers). The physical and mechanical properties of the fiberboards, such as water absorption (WA), thickness swelling (TS), modulus of elasticity (MOE), bending strength (MOR), internal bond strength (IB), as well as formaldehyde content, were determined in accordance with the corresponding European standards. Overall, the HDF panels exhibited very satisfactory physical and mechanical properties, fully complying with the standard requirements of HDF for use in load-bearing applications in humid conditions. Markedly, the formaldehyde content of the laboratory fabricated panels was extremely low, ranging between 0.7–1.0 mg/100 g, which is, in fact, equivalent to the formaldehyde release of natural wood.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 422
Author(s):  
Kuai Zhang ◽  
Yungang Li ◽  
Hongyan Yan ◽  
Chuang Wang ◽  
Hui Li ◽  
...  

An Fe/FeAl2O4 composite was prepared with Fe-Fe2O3-Al2O3 powder by a hot press sintering method. The mass ratio was 6:1:2, sintering pressure was 30 MPa, and holding time was 120 min. The raw materials for the powder particles were respectively 1 µm (Fe), 0.5 µm (Fe2O3), and 1 µm (Al2O3) in diameter. The effect of sintering temperature on the microstructure and mechanical properties of Fe/FeAl2O4 composite was studied. The results showed that Fe/FeAl2O4 composite was formed by in situ reaction at 1300 °C–1500 °C. With the increased sintering temperature, the microstructure and mechanical properties of the Fe/FeAl2O4 composite showed a change law that initially became better and then became worse. The best microstructure and optimal mechanical properties were obtained at 1400 °C. At this temperature, the grain size of Fe and FeAl2O4 phases in Fe/FeAl2O4 composite was uniform, the relative density was 96.7%, and the Vickers hardness and bending strength were 1.88 GPa and 280.0 MPa, respectively. The wettability between Fe and FeAl2O4 was enhanced with increased sintering temperature. And then the densification process was accelerated. Finally, the microstructure and mechanical properties of the Fe/FeAl2O4 composite were improved.


2011 ◽  
Vol 335-336 ◽  
pp. 1454-1458
Author(s):  
Jing Xian Zhang ◽  
Bi Qin Chen ◽  
Dong Liang Jiang ◽  
Qing Ling Lin ◽  
Zhong Ming Chen ◽  
...  

In the present work, porous HA scaffolds with well controlled pore size, porosity and high compressive strength were prepared by aqueous gelcasting. PMMA beads with different size were used as the pore forming agent. The compositions, microstructure and properties of porous HA bioceramics were analyzed by XRD, SEM, Hg porosimetry etc. The mechanical properties were also tested. For scaffolds with the porosity as 70%, the average compressive strength was 11.9±1.7 MPa. Results showed that glecasting process can be used for the preparation of porous HA biomaterials with well controlled pore size and improved mechanical properties.


Author(s):  
Adrian Circiumaru ◽  
Vasile Bria ◽  
Iulian-Gabriel Birsan ◽  
Gabriel Andrei ◽  
Dumitru Dima

The multi-component composites could represent the cheapest solution when controllable properties are required. In order to establish the right amount of filler it is necessary to analyze not only the electro-magnetic and mechanical properties but also, the thermal ones. The filler presence in the matrix produces discontinuities at the fibre-matrix interface with consequences regarding mechanical properties. Using a single filler it is possible to improve one or two properties electrical and thermal conductivity for instance and mean time to induce a decrease of other properties as bending strength, shock resistance etc. Using polymer layers with relatively high electrical conductivity as external layers of laminate and magnetic particles filled polymer as core layers. An electric circuit might be, at the same time, the reinforcement of a composite leading to lighter structures and, based on carbon fiber’s properties might transmit information about the material’s loading, temperature or integrity. Fabric reinforced or textile composites are used in aerospace, automotive, naval and other applications. They are convenient material forms providing adequate stiffness and strength in many structures. The microstructure of composite reinforced with woven, braided, or stitched networks is significantly different from that of tape based laminates. The properties of the composite depend not only on the properties of the components but on quality and nature of the interface between the components and its properties. Reinforced composites with filled epoxy matrix were formed using a hybrid technique consisting in layer-by-layer adding of reinforcement sheets into a glass mould. Various distributions of reinforcement sheets and filled polymer layers were realized in order to point out the ways in which the final properties might be controlled. Mechanical properties were analyzed.


Sign in / Sign up

Export Citation Format

Share Document