Synthesis and Electrochemical Behaviour of Lithium Manganese Vanadates

2012 ◽  
Vol 545 ◽  
pp. 195-198 ◽  
Author(s):  
Norlida Kamarulzaman ◽  
Norashikin Kamarudin ◽  
Rusdi Roshidah ◽  
Kelimah Elong ◽  
Jaafar Mohd Hilmi

Lithium manganese vanadates are synthesized using the sol-gel method. The sol-gel method is a better synthesis method compared to that of the solid state reaction method and usually yields purer and more uniform sized particles. It also uses lower sintering temperatures and shorter time. This will be a savings in terms of costs of the material as heating requires a lot of electrical energy. Precursor materials acquired are subjected to thermal studies and a suitable sintering temperature is chosen in order to achieve pure, single phase compounds. As is well known it is not easy to get pure single phase final products for materials containing vanadium and manganese. From X-Ray diffraction (XRD), the results showed multi phase spinel lithium manganese vanadates. Battery fabrication is done using a composite cathode and a half cell is assembled in an argon filled glove box. Cell testing is done using a constant current charge-discharge procedure. The results show reasonable charge-discharge behaviour but the capacity is a little less than that for LiMn2O4.

2012 ◽  
Vol 545 ◽  
pp. 275-278 ◽  
Author(s):  
Lili Widarti Zainuddin ◽  
Norlida Kamarulzaman

A ceramics sample of LiTaO3 was prepared using a sol-gel method. The sample is annealed at 750 °C for 48 hours. X-ray diffraction analysis indicate the formation of single phase, rhombohedral structure. An ac impedance study was used to analyse the conductivity of LiTaO3 at room temperature and at various temperatures.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Savka Janković ◽  
Dragana Milisavić ◽  
Tanja Okolić ◽  
Dijana Jelić

Zinc oxide is a highly applicable semiconductor material. Wide applica-tion of this nanomaterial is connected to wide spectrum of energy band gap, high bond en-ergy, great thermal conductivity, but also with its non-toxicity, antibacterial activity, bio-compatibility and biodegradability characteristics. The aim of this paper is synthesis and characterization of silver doped ZnO nanoparticles (ZnO:Ag NP) using sol-gel method. Ob-tained samples of silver doped ZnO nanoparticles were characterized by following tech-niques: Fourier-transform infrared spectroscopy (FTIR), UV/VIS spectrophotometry, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spec-troscopy (EDX). Efficiency of provided synthesis method was examined by FTIR spectros-copy. XRD determined the purity and crystallinity, and wurtzite structure of synthesized material. Surface morphology and the effect of doping were examined using SEM and EDX characterization methods. Results showed better conductivity after doping ZnO nanoparti-cles with silver. SEM micrographs showed ZnO:Ag NP in the form of nanorods with a par-ticle average size of 6 nm.


2022 ◽  
Author(s):  
He Duan ◽  
Zhiyong Zhou ◽  
Yanming Zhao ◽  
Youzhong Dong

Single-phase magnesium molybdate, MgMoO4, is successfully synthesized by a facile sol-gel method. Attributed to the multielectron reaction and the synergistic effect of the elements molybdenum (Mo) and magnesium (Mg), the...


2007 ◽  
Vol 42 (23) ◽  
pp. 9801-9806 ◽  
Author(s):  
Radhouane Bel Hadj Tahar ◽  
Noureddine Bel Hadj Tahar ◽  
Abdelhamid Ben Salah

2018 ◽  
Vol 735 ◽  
pp. 945-949 ◽  
Author(s):  
Shuai Zheng ◽  
Jiangying Wang ◽  
Jingji Zhang ◽  
Hongliang Ge ◽  
Zhi Chen ◽  
...  

2012 ◽  
Vol 501 ◽  
pp. 56-60 ◽  
Author(s):  
Jaafar Mohd Hilmi ◽  
Mohamed Nor Sabirin ◽  
Rosiyah Yahya ◽  
Norlida Kamarulzaman

LiCoO2 is a well established commercial Li-ion battery cathode. However, due to cost constraints and the toxicity of the metal, other layered compounds should be investigated. In this paper, layered LiMn0.3Co0.3Ni0.3Fe0.1O2 were prepared using sol-gel method with CH3COOLi•2H2O, (CH3CO2)2Mn•4H2O, (CH3CO2)2Co•4H2O, (CH3CO2)2Ni•4H2O and Fe (NO3)3•9H2O as starting materials. The sample was characterized by simultaneous thermogravimetric analysis, x-ray powder diffraction and scanning electron microscopy. The electrochemical characteristics were studied by a charge-discharge cycle done on the fabricated cell using a charge current of 1.0 mA and a discharge current 0.5 mA between 4.2 and 0.5 V. The XRD results showed that the layered LiMn0.3Co0.3Ni0.3Fe0.1O2 were of pure phase with discharge capacity of about 136 mAhg-1. The batteries were then subjected to a series of charge-discharge cycling in the voltage range of 2.5 to 4.2 V. The results showed there was little loss of capacity after 10 cycles.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Ramadan Shaiboub ◽  
Noor Baa'yah Ibrahim ◽  
Mustaffa Abdullah ◽  
Ftema Abdulhade

NanoparticlesY3−xErxFe5O12(x=0.2, 1.0, and 2.0) thin films were prepared by sol-gel method and treated at 800, 900, and 1000∘C, respectively, for 2 h. The films have single phase garnet structure and the sizes of particles are in the range of 44 to 83 nm. The magnetic measurements show that the saturation magnetization decreased with increasing of Er concentration for all samples treated at different annealing temperatures. The saturation magnetization increased with the particle size due to the enhancement of the surface spin effect. The coercivity initially decreased forx=1.0and then increased forx=2.0with increasing annealing temperature.


2021 ◽  
Author(s):  
V Maphiri ◽  
L Melato ◽  
Mhlongo ◽  
TT Hlatshwayo ◽  
TE Motaung ◽  
...  

Abstract Un-doped and ZnAlxO(1.5x + 1):0.1% Tb3+ (ZAOT) nano-powders were synthesized via citrate sol-gel method. The Alx moles were varied in the range of 0.25 ≤ x ≤ 5.0. The X-ray powder diffraction (XRD) data revealed that for the x < 1.5, the prepared samples crystal structure consists of mixed phases of the cubic ZnAl2O4 and hexagonal ZnO phases, while for the x ≥ 1.5 the structure consists of single phase of cubic ZnAl2O4. This was confirmed by the Raman and Fourier-Transform Infrared (FTIR) vibrational spectroscopy. Scanning electron microscopy (SEM) showed that varying Alx moles influences the morphology while Transmission electron microscopy (TEM) shows the dual morphology at x < 1.5. The photoluminescence (PL) revealed intense and distinct emissions attributed to both the host and Tb3+ transitions. The emission intensity highly depends on the Alx moles. The International Commission on Illumination (CIE) colour chromaticity showed that the emission colour could be tuned by varying the Alx moles.


Sign in / Sign up

Export Citation Format

Share Document