Analysis and Optimization of Sensitivity of a MEMS Peizoresistive Pressure Sensor

2012 ◽  
Vol 548 ◽  
pp. 652-656 ◽  
Author(s):  
S. Maflin Shaby ◽  
A. Vimala Juliet

This paper presents a MEMS Piezoresistive pressure sensor which utilizes a circular shaped polysilicon diaphragm with a nanowire to enhance the sensitivity of the pressure sensor. The polysilicon nanowire is fabricated in such a way that it forms a bridge between the circular polysilicon diaphragm and the substrate. The high Piezoresistive effect of Silicon nanowires is used to enhance the sensitivity. A circular polysilicon nanowire piezoresistor was fabricated by means of reactive ion etching. This paper describes the performance analysis, structural design and fabrication of piezoresistive pressure sensor using simulation technique. The polysilicon nanowire pressure sensor has a circular diaphragm of 500nm radius and has a thickness about 10nm. Finite element method (FEM) is adopted to optimize the sensor output and to improve the sensitivity of the circular shaped diaphragm of a polysilicon nanowire Piezoresistive pressure sensor. The best position to place the Polysilicon nanowires to receive maximum stress was also considered during the design process..The fabricated polysilicon nanowire has high sensitivity of about 133 mV/VKPa.

2019 ◽  
Vol 33 (07) ◽  
pp. 1950040 ◽  
Author(s):  
Samridhi ◽  
Manish Kumar ◽  
Sachin Dhariwal ◽  
Kulwant Singh ◽  
P. A. Alvi

This paper reports the stress and frequency analysis of dynamic silicon diaphragm during the simulation of micro-electro-mechanical-systems (MEMS) based piezoresistive pressure sensor with the help of finite element method (FEM) within the frame work of COMSOL software. Vibrational modes of rectangular diaphragm of piezoresistive pressure sensor have been determined at different frequencies for different pressure ranges. Optimal frequency range for particular applications for any diaphragm is a very important so that MEMS sensors performance should not degrade during the dynamic environment. Therefore, for the MEMS pressure sensor having applications in dynamic environment, the diaphragm frequency of 280 KHz has been optimized for the diaphragm thickness of 50 [Formula: see text]m and hence this frequency can be considered for showing the better piezoresistive effect and high sensitivity. Moreover, the designed pressure sensor shows the high linearity and enhanced sensitivity of the order of ([Formula: see text]0.5066 mV/psi).


2013 ◽  
Vol 771 ◽  
pp. 159-162
Author(s):  
Li Feng Qi ◽  
Zhi Min Liu ◽  
Xing Ye Xu ◽  
Guan Zhong Chen ◽  
Xue Qing

The relative research of low range and high anti-overload piezoresistive pressure sensor is carried out in this paper and a new kind of sensor chip structure, the double ends-four beam structure, is proposed. Trough the analysis, the sensor chip structure designed in this paper has high sensitivity and linearity. The chip structure is specially suit for the micro-pressure sensor. The theoretical analysis and finite element analysis is taken in this paper, which provide important scientific basis for the pressure sensor development.


2010 ◽  
Vol 2010 (HITEC) ◽  
pp. 000373-000378
Author(s):  
R. Otmani ◽  
N. Benmoussa ◽  
K. Ghaffour

Piezoresistive pressure sensors based on Silicon have a large thermal drift because of their high sensitivity to temperature (ten times more sensitive to temperature than metals). So the study of the thermal behavior of these sensors is essential to define the parameters that cause the drift of the output characteristics. In this study, we adopted the behavior of 2nd degree gauges depending on the temperature. Then we model the thermal behavior of the sensor and its characteristics.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 664 ◽  
Author(s):  
Junsong Hu ◽  
Junsheng Yu ◽  
Ying Li ◽  
Xiaoqing Liao ◽  
Xingwu Yan ◽  
...  

The reasonable design pattern of flexible pressure sensors with excellent performance and prominent features including high sensitivity and a relatively wide workable linear range has attracted significant attention owing to their potential application in the advanced wearable electronics and artificial intelligence fields. Herein, nano carbon black from kerosene soot, an atmospheric pollutant generated during the insufficient burning of hydrocarbon fuels, was utilized as the conductive material with a bottom interdigitated textile electrode screen printed using silver paste to construct a piezoresistive pressure sensor with prominent performance. Owing to the distinct loose porous structure, the lumpy surface roughness of the fabric electrodes, and the softness of polydimethylsiloxane, the piezoresistive pressure sensor exhibited superior detection performance, including high sensitivity (31.63 kPa−1 within the range of 0–2 kPa), a relatively large feasible range (0–15 kPa), a low detection limit (2.26 pa), and a rapid response time (15 ms). Thus, these sensors act as outstanding candidates for detecting the human physiological signal and large-scale limb movement, showing their broad range of application prospects in the advanced wearable electronics field.


Author(s):  
Tran Anh Vang ◽  
Xianmin Zhang ◽  
Benliang Zhu

The sensitivity and linearity trade-off problem has become the hotly important issues in designing the piezoresistive pressure sensors. To solve these trade-off problems, this paper presents the design, optimization, fabrication, and experiment of a novel piezoresistive pressure sensor for micro pressure measurement based on a combined cross beam - membrane and peninsula (CBMP) structure diaphragm. Through using finite element method (FEM), the proposed sensor performances as well as comparisons with other sensor structures are simulated and analyzed. Compared with the cross beam-membrane (CBM) structure, the sensitivity of CBMP structure sensor is increased about 38.7 % and nonlinearity error is reduced nearly 8%. In comparison with the peninsula structure, the maximum non-linearity error of CBMP sensor is decreased about 40% and the maximum deflection is extremely reduced 73%. Besides, the proposed sensor fabrication is performed on the n-type single crystal silicon wafer. The experimental results of the fabricated sensor with CBMP membrane has a high sensitivity of 23.4 mV/kPa and a low non-linearity of −0.53% FSS in the pressure range 0–10 kPa at the room temperature. According to the excellent performance, the sensor can be applied to measure micro-pressure lower than 10 kPa.


2017 ◽  
Vol 12 (4) ◽  
pp. 546-553 ◽  
Author(s):  
Tingzhong Xu ◽  
Hongyan Wang ◽  
Yong Xia ◽  
Zhiming Zhao ◽  
Mimi Huang ◽  
...  

2012 ◽  
Vol 602-604 ◽  
pp. 111-114
Author(s):  
Peng Zhan Zhou ◽  
Fang Sheng Tan

The stress characteristics on a composite wind turbine blade are analyzed by using a finite element method. The whole stress level of the spar cap and the blade root is higher than that of the shear web and the airfoil plate, so the spar cap and the blade root are the main force-supporting parts. If the stress concentration point on the interface corner between the blade root and the shear web is neglected, the stress of the spar cap is higher than that of the blade root, and its maximum stress and mean stress are 211 MPa and 180 MPa respectively. The maximum stress of the blade is only 34.8% of the tensile stress of the glass-fiber/epoxy composites. It indicates that the laminate structural design of the blade is inclined to be safety.


Sign in / Sign up

Export Citation Format

Share Document