Treatment of Pb2+-Containing Mine Wastewater with Layered Nanometer Zinc Hydroxide

2012 ◽  
Vol 550-553 ◽  
pp. 2081-2084
Author(s):  
Hai Hong Jia ◽  
Guo Xiang Xu ◽  
Hong Ying Zhou

Experiment was made to study heavy metal ion mining wastewater.The effect of Temperature, pH, Initial concentration, coexisting ions and time on the performance of Nanomaterials were investigated. Results showed that removal efficiency of heavy metal ions was higher than 85% and Pb2+ concentration in permeation liquid was lower than 0.5 mg/L,which verified that Nanomaterials is effective for the removal of heavy metal ions, and the concentration liquid can be reclaimed.

2011 ◽  
Vol 356-360 ◽  
pp. 1482-1487 ◽  
Author(s):  
Guo Xiang Xu ◽  
Wen Bin Chen

Experiment was made to study heavy metal ion mining wastewater.The effect of Temperature, pH, Initial concentration, coexisting ions and time on the performance of Nanomaterials were investigated. Results showed that removal efficiency of heavy metal ions was higher than 86% after adsorption treatment of containing Cr(VI) mine wastewater, Cr(VI) concentration in permeation liquid was lower than 0.1 mg/L, and the concentration of Cr(VI) ions reaches the first class of irrigation water quality standards , which verified that Nanomaterials is effective for the removal of heavy metal ions, and the concentration liquid can be reclaimed.


2019 ◽  
Vol 70 (5) ◽  
pp. 1507-1512
Author(s):  
Baker M. Abod ◽  
Ramy Mohamed Jebir Al-Alawy ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor

The aim of this study is to use the dry fibers of date palm as low-cost biosorbent for the removal of Cd(II), and Ni(II) ions from aqueous solution by fluidized bed column. The effects of many operating conditions such as superficial velocity, static bed height, and initial concentration on the removal efficiency of metal ions were investigated. FTIR analyses clarified that hydroxyl, amine and carboxyl groups could be very effective for bio-sorption of these heavy metal ions. SEM images showed that dry fibers of date palm have a high porosity and that metal ions can be trapped and sorbed into pores. The results show that a bed height of 6 cm, velocity of 1.1Umf and initial concentration for each heavy metal ions of 50 mg/L are most feasible and give high removal efficiency. The fluidized bed reactor was modeled using ideal plug flow and this model was solved numerically by utilizing the MATLAB software for fitting the measured breakthrough results. The breakthrough curves for metal ions gave the order of bio-sorption capacity as follow: Cd(II)]Ni(II).


2014 ◽  
Vol 989-994 ◽  
pp. 312-315
Author(s):  
Yu Tong Guan ◽  
Shao Hong Wang ◽  
Mei Han Wang ◽  
Zhao Xia Hou ◽  
Xiao Dan Hu ◽  
...  

Hydroxyapatite (HAP) is an effective adsorbent for removing heavy metal ions. In this study, HAP was prepared by sol-gel method and used for removing Cu2+ from aqueous solution. Initial concentration of Cu2+ in the aqueous solution was evaluated as an important parameter determining uptake. The removal efficiency and the adsorption capacity of HAP for Cu2+ were investigated. EDS analysis indicated the presence of Cu2+ on the HAP surface.


2017 ◽  
Vol 14 (1) ◽  
pp. 15
Author(s):  
M.B. Nicodemus Ujih ◽  
Mohammad Isa Mohamadin ◽  
Milla-Armila Asli ◽  
Bebe Norlita Mohammed

Heavy metal ions contamination has become more serious which is caused by the releasing of toxic water from industrial area and landfill that are very harmful to all living organism especially human and can even cause death if contaminated in small amount of heavy metal concentration. Currently, peoples are using classic method namely electrochemical treatment, chemical oxidation/reduction, chemical precipitation and reverse osmosis to eliminate the metal ions from toxic water. Unfortunately, these methods are costly and not environmentally friendly as compared to bioadsorption method, where agricultural waste is used as biosorbent to remove heavy metals. Two types of agricultural waste used in this research namely oil palm mesocarp fiber (Elaesis guineensis sp.) (OPMF) and mangrove bark (Rhizophora apiculate sp.) (MB) biomass. Through chemical treatment, the removal efficiency was found to improve. The removal efficiency is examined based on four specification namely dosage, of biosorbent to adsorb four types of metals ion explicitly nickel, lead, copper, and chromium. The research has found that the removal efficiency of MB was lower than OPMF; whereas, the multiple metals ions removal efficiency decreased in the order of Pb2+ > Cu2+ > Ni2+ > Cr2+.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 685
Author(s):  
Ai-Huei Chiou ◽  
Jun-Luo Wei ◽  
Ssu-Han Chen

A novel surface-enhanced Raman scattering (SERS)-based probe to capture heavy metal ion (Zn2+) by bovine serum albumin (BSA) using Si-nanowire (SiNW) arrays with silver nanoparticles (AgNPs) was developed. A layer with AgNPs was deposited on the SiNW surface by RF magnetron sputtering for enhancement of SERS signals. Using a high-resolution transmission electron microscope (HRTEM), the observation reveals that the AgNP layer with depths of 30–75 nm was successfully deposited on SiNW arrays. The Ag peaks in EDS and XRD spectra of SiNW arrays confirmed the presence of Ag particles on SiNW arrays. The WCA observations showed a high affinity of the Ag–SiNW arrays immobilized with BSA (water contact angle (WCA) = 87.1°) and ZnSO4 (WCA = 8.8°). The results of FTIR analysis illustrate that the conjugate bonds exist between zinc sulfate (ZnSO4) and –OH groups/–NH groups of BSA. The resulting SiNWs/Ag NPs composite interfaces showed large Raman scattering enhancement for the capture of heavy metal ions by BSA with a detection of 0.1 μM. BSA and ZnSO4 conjugations, illustrating specific SERS spectra with high sensitivity, which suggests great promise in developing label-free biosensors.


2012 ◽  
Vol 518-523 ◽  
pp. 361-368 ◽  
Author(s):  
Rong Bing Fu ◽  
Xin Xing Liu ◽  
Fang Liu ◽  
Jin Ma ◽  
Yu Mei Ma ◽  
...  

A new permeable reactive composite electrode (PRCE) attached with a permeable reactive layer (PRL) of Fe0 and zeolite has been developed for soil pH control and the improved removal efficiency of heavy metal ions (Cd, Ni, Pb, Cu) from soil in electrokinetic remediation process. The effects of different composite electrodes on pH control and heavy metal removal efficiency were studied, and changes in the forms of heavy metals moved onto the electrodes were analyzed. The results showed that with acidic/alkaline zeolite added and renewed in time, the composite electrodes could effectively neutralize and capture H+ and OH- produced from electrolysis of the anolyte and catholyte, avoiding or delaying the formation of acidic/alkaline front in tested soil, preventing premature precipitation of heavy metal ions and over-acidification of soil, and thus significantly improved the heavy metal removal efficiency. Fe0 in composite electrodes could deoxidize and stabilize the heavy metal ions. After that capture and immobilization of the pollutants were achieved. The results also showed that, using "Fe0 + zeolite" PRCE in the cathode with timely renewal, after 15-day remediation with a DC voltage of 1.5 V/cm, the total removal rates of Cd, Pb, Cu and Ni were 49.4%, 47.1%, 36.7% and 39.2%, respectively.


2021 ◽  
Author(s):  
Rongrong Si ◽  
Daiqi Wang ◽  
Yehong Chen ◽  
Dongmei Yu ◽  
Qijun Ding ◽  
...  

Abstract Heavy metal ion pollutions are of serious threat for our human health, and advanced technologies on removal of heavy metal ions in water or soil are in the focus of intensive research worldwide. Nanocellulose based adsorbents are emerging as an environmentally friendly appealing materials platform for heavy metal ions removal as nanocellulose has higher specific surface area, excellent mechanical properties and good biocompatibility. In this review, we briefly compare the differences of three kinds of nanocellulose and their preparation method. Then we cover the most recent work on nanocellulose based adsorbents for heavy metal ions removal, and present an in-depth discussion of the modification technologies for nanocellulose in assembling high performance heavy ions adsorbent process. By introducing functional groups, such as amino, carboxyl, phenolic hydroxyl, and thiol, the nanocellulose based adsorbents not only remove single heavy metal ions through ion exchange, chelation/complexation/coordination, electrostatic attraction, hydrophobic actions, binding affinity and redox reactions, but also can selectively adsorb multiple heavy ions in water. Finally, some challenges of nanocellulose based adsorbents for heavy metal ions are also prospected. We anticipate that the review supplies some guides for nanocellulose based adsorbents applied in heavy metal ions removal field.


2018 ◽  
Vol 42 (11) ◽  
pp. 8864-8873 ◽  
Author(s):  
Leili Esrafili ◽  
Vahid Safarifard ◽  
Elham Tahmasebi ◽  
M. D. Esrafili ◽  
Ali Morsali

We examined adsorption behavior of some MOFs having different functional groups in their pillar structures for adsorption of some heavy metal ions.


2020 ◽  
Vol 17 (1) ◽  
pp. 74-90 ◽  
Author(s):  
Nader Ghaffari Khaligh ◽  
Mohd Rafie Johan

: A variety of processes were reported for efficient removing of heavy metal from wastewater, including but not limited to ion exchange, reverse osmosis, membrane filtration, flotation, coagulation, chemical precipitation, solvent extraction, electrochemical treatments, evaporation, oxidation, adsorption, and biosorption. Among the aforementioned techniques, adsorption/ion exchange has been known as a most important method for removing heavy metal ions and organic pollutants due to great removal performance, simple and easy process, cost-effectiveness and the considerable choice of adsorbent materials. : Nanotechnology and its applications have been developed in most branches of science and technology. Extensive studies have been conducted to remove heavy metal ions from wastewater by preparation and applications of various nanomaterials. Nanomaterials offer advantages in comparison to other materials including an extremely high specific surface area, low-temperature modification, short intraparticle diffusion distance, numerous associated sorption sites, tunable surface chemistry, and pore size. In order to evaluate an adsorbent, two key parameters are: the adsorption capacity and the desorption property. The adsorption parameters including the absorbent loading, pH and temperature, concentration of heavy metal ion, ionic strength, and competition among metal ions are often studied and optimized. : Several reviews have been published on the application of Graphene (G), Graphene Oxide (GO) in water treatment. In this minireview, we attempted to summarize the recent research advances in water treatment and remediation process by graphene-based materials and provide intensive knowledge of the removal of pollutants in batch and flow systems. Finally, future applicability perspectives are offered to encourage more interesting developments in this promising field. This minireview does not include patent literature.


Sign in / Sign up

Export Citation Format

Share Document