Kinetics Study on the Oxidative Degradation of Cellotriose and Cellotetraose by Hydrogen Peroxide

2012 ◽  
Vol 550-553 ◽  
pp. 2638-2643
Author(s):  
Hong Peng

Cellulose is one of the main components of renewable lignocellulosic biomass. Functional cellooligosaccharides obtained from the hydrolysate of cellulose could be used as model compounds to study the chemical reactivity of cellulose. HPLC, 1H NMR and 13C NMR techniques were used to analyze the degradation products of cellotriose and cellotetraose oxided by hydrogen peroxide. Results demonstrated that the main degradation products were oligosaccharides with lower degree of polymerization (DP), glucose, and other products including polyhydroxy acid and ketone. The degradation rate declined with the increment of DP. The degradation of cellotriose and cellotetraose at 60 °C followed a pseudo-first-order rate law, the degradation reaction rates were k3=0.25 h-1 and k4=0.15 h-1. Cellooligosaccharides could be degraded completely at higher temperature and for longer reaction time. Degradation products were also degraded at higher temperature and for longer time. The concentration of degradation products went up with the increase of substrate concentration.

2019 ◽  
Vol 17 (1) ◽  
pp. 64-74 ◽  
Author(s):  
Fawzia A. Ibrahim ◽  
Amina M. El-Brashy ◽  
Mohamed I. El-Awady ◽  
Nora. A. Abdallah

AbstractThe native fluorescence of sotalol hydrochloride (SOT) was used as a basis for establishing a new method of analysis for SOT in tablets and spiked human plasma. The fluorescence of SOT in water was measured at 310 nm when excited at 235 nm. The detection limit (LOD) was 0.37 ng/mL and the quantification limit (LOQ) was 1.08 ng/mL. The proposed method offers high sensitivity which permits determination of SOT, even if present in a very small amount, in human plasma. The obtained results were successfully compared to that of a reference pharmacopeial method and statistical analysis proved a good agreement between the results of both methods. Further investigation of the SOT stability upon exposure to various stress conditions, such as acidic, alkaline, oxidative and photolytic degradation conditions was also performed. The kinetics of acidic, alkaline and oxidative degradation of the drug showed a pseudo first order degradation reaction. A proposal of the degradation pathway was suggested and confirmed by developing a thin layer chromatographic method used for separation of SOT and its acidic and alkaline degradation products.


2021 ◽  
pp. 088391152110031
Author(s):  
Scott M Herting ◽  
Mary Beth B Monroe ◽  
Andrew C Weems ◽  
Sam T Briggs ◽  
Grace K Fletcher ◽  
...  

Implantable medical devices must undergo thorough evaluation to ensure safety and efficacy before use in humans. If a device is designed to degrade, it is critical to understand the rate of degradation and the degradation products that will be released. Oxidative degradation is typically modeled in vitro by immersing materials or devices in hydrogen peroxide, which can limit further analysis of degradation products in many cases. Here we demonstrate a novel approach for testing the cytocompatibility of degradation products for oxidatively-degradable biomaterials where the materials are exposed to hydrogen peroxide, and then catalase enzyme is used to convert the hydrogen peroxide to water and oxygen so that the resulting aqueous solution can be added to cell culture media. To validate our results, expected degradation products are also synthesized then added to cell culture media. We used these methods to evaluate the cytocompatibility of degradation products from an oxidatively-degradable shape memory polyurethane designed in our lab and found that the degradation of these polymers is unlikely to cause a cytotoxic response in vivo based on the guidance provided by ISO 10993-5. These methods may also be applicable to other biocompatibility tests such as tests for mutagenicity or systemic toxicity, and evaluations of cell proliferation, migration, or gene and protein expression.


2021 ◽  
Vol 316 ◽  
pp. 56-61
Author(s):  
N.P. Shabelskaya ◽  
M.A. Egorova ◽  
E.V. Vasilieva

The present research is devoted to the formation process of a nanoscale composite material with the composition of CoFe2O4/α-Fe2O3. The synthesized material has been studied by the following methods: x-ray phase analysis and scanning electron microscopy. The produced sample is analyzed to be a CoFe2O4 cabic spinel with a unit cell parameters of a = 0.8394 nm and α-Fe2O3. The average crystallite size of the resulting samples, determined by the Debye-Scherrer equation, is 4.8 nm for the cobalt (II) ferrite and 7.9 nm for α-Fe2O3. Reaction rate increase is determined by the incease in hydrogen peroxide amount in the solution. The synthesized composite material is found to exhibit increased catalytic activity in the oxidative degradation reaction of organic dye by hydrogen peroxide. The catalytic activity is established to be particularly high, when the process is occurring in acidic medium. The obtained samples have a highly developed surface and may be of interest as catalysts, adsorbents.


2018 ◽  
Vol 15 (1) ◽  
pp. 11-20 ◽  
Author(s):  
Maria A. Morosanova ◽  
Anton S. Fedorov ◽  
Elena I. Morosanova

Background: The consumption of antioxidants, including phenolic compounds, is considered important for preventing the oxidative damage diseases and ageing. The total polyphenol content (TPC) is the parameter used to estimate the quality of plant-derived products. Methods: Phenol oxidase activity of green bean (Phaseolus vulgaris) crude extract (in the presence of hydrogen peroxide) and banana (Musa sp.) pulp crude extract has been studied spectrophotometrically using catechol, gallic acid, caffeic acid, ferulic acid, and quercetin as substrates. All studied compounds have been oxidized in the presence of green bean crude extract and hydrogen peroxide; all studied compounds except ferulic acid have been oxidized in the presence of banana pulp crude extract. Michaelis constants (Km) and maximum reaction rates (Vmax) have been determined for oxidation in the presence of green bean crude extract and hydrogen peroxide (Km are 3.8×10-4 M, 1.6×10-3 M, 2.2×10-4 M, 2.3×10-4 M, 1.4×10-4 M and Vmax are 0.046 min-1, 0.102 min-1, 0.185 min-1, 0.053 min-1, 0.041 min-1 for catechol, gallic acid, caffeic acid, ferulic acid, and quercetin, respectively) and for oxidation in the presence of banana pulp crude extract (Km are 1.6×10-3 M, 3.8×10-3 M, 2.2×10-3 M, 4.2×10-4 M and Vmax are 0.058 min-1, 0.025 min-1, 0.027 min-1, 0.015 min-1 for catechol, gallic acid, caffeic acid, and quercetin, respectively). The influence of 3-methyl-2-benzothiazolinone hydrazone (MBTH) on the oxidation reactions kinetics has been studied: Michaelis constants values decrease and maximum reaction rates increase, which contributes to the increase in sensitivity of the determination. Results: Kinetic procedures of Total Polyphenol Content (TPC) determination using crude plants extracts in the presence of MBTH have been proposed (time of analysis is 1 min). For gallic acid (used as a standard for TPC determination) detection limit is 5.3×10-5 M, quantitation limit is 1.8×10-4 M, and linear range is 1.8×10-4 - 1.3×10-3 M for green bean crude extract; detection limit is 2.9×10-5 M, quantitation limit is 9.5×10-5 M, and linear range is 9.5×10-5 - 2.4×10-3 M for banana pulp crude extract. Proposed procedures are characterized by higher interference thresholds for sulfites, ascorbic acid, and citric acid compared to pure enzymes (horseradish peroxidase and mushroom tyrosinase) in the same conditions. Compared with standard Folin-Ciocalteu (FC) method the procedures described in this work are also characterized by less interference and more rapid determination. Conclusion: The procedures have been applied to TPC determination in tea, coffee, and wine samples. The results agree with the FC method for tea and coffee samples and are lower for wine samples, probably, due to sulfites interference.


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ajinkya More ◽  
Thomas Elder ◽  
Zhihua Jiang

Abstract This review discusses the main factors that govern the oxidation processes of lignins into aromatic aldehydes and acids using hydrogen peroxide. Aromatic aldehydes and acids are produced in the oxidative degradation of lignin whereas mono and dicarboxylic acids are the main products. The stability of hydrogen peroxide under the reaction conditions is an important factor that needs to be addressed for selectively improving the yield of aromatic aldehydes. Hydrogen peroxide in the presence of heavy metal ions readily decomposes, leading to minor degradation of lignin. This degradation results in quinones which are highly reactive towards peroxide. Under these reaction conditions, the pH of the reaction medium defines the reaction mechanism and the product distribution. Under acidic conditions, hydrogen peroxide reacts electrophilically with electron rich aromatic and olefinic structures at comparatively higher temperatures. In contrast, under alkaline conditions it reacts nucleophilically with electron deficient carbonyl and conjugated carbonyl structures in lignin. The reaction pattern in the oxidation of lignin usually involves cleavage of the aromatic ring, the aliphatic side chain or other linkages which will be discussed in this review.


Tetrahedron ◽  
2004 ◽  
Vol 60 (17) ◽  
pp. 3873-3881 ◽  
Author(s):  
Naoki Saito ◽  
Chieko Tanaka ◽  
Yu-ichi Koizumi ◽  
Khanit Suwanborirux ◽  
Surattana Amnuoypol ◽  
...  

2016 ◽  
Vol 79 (13-14) ◽  
pp. 919-926 ◽  
Author(s):  
Ana Protić ◽  
Marina Radišić ◽  
Jelena Golubović ◽  
Biljana Otašević ◽  
Mira Zečević ◽  
...  

Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1149 ◽  
Author(s):  
Jing Liu ◽  
Zhenggang Gong ◽  
Guangxu Yang ◽  
Lihui Chen ◽  
Liulian Huang ◽  
...  

Due to the invalidity of traditional models, pretreatment conditions dependent parameter of susceptible dissolution degree of xylan (dX) was introduced into the kinetic models. After the introduction of dX, the dissolution of xylan, and the formation of xylo-oligosaccharides and xylose during ethanol based auto-catalyzed organosolv (EACO) pretreatments of bamboo were well predicted by the pseudo first-order kinetic models (R2 > 97%). The parameter of dX was verified to be a variable dependent of EACO pretreatment conditions (such as solvent content in pretreatment liquor and pretreatment temperature). Based on the established kinetic models of xylan dissolution, the dissolution of glucan and the formation of degradation products (furfural and acetic acid) could also be empirically modeled (R2 > 97%). In addition, the relationship between xylan and lignin removal can provide guidance for alleviating the depositions of lignin or pseudo-lignin. The parameter of dX derived novel kinetic models can not only be used to reveal the multi-step reaction mechanisms of xylan, but also control the final removal of main components in bamboo during EACO pretreatments, indicating scientific and practical significance for governing the biorefinery of woody biomass.


2004 ◽  
Vol 50 (5) ◽  
pp. 227-234 ◽  
Author(s):  
M. Petrovic ◽  
P. Gehringer ◽  
H. Eschweiler ◽  
D. Barceló

A commercial blend of nonylphenol ethoxylates (NPEOs) was chosen as representative for non-ionic polyethoxylated surfactants to study the oxidative degradation of this class of surfactants in water using ozonation as well as electron beam irradiation with and without the addition of ozone as treatment processes. The electron beam irradiation processes applied represent so-called Advanced Oxidation Processes (AOPs); the combined ozone/electron beam irradiation is, moreover, the most powerful AOP which can be applied in aqueous systems. It was found that both ozonation and the two AOPs applied were able to decompose not only the NPEOs but also the polyethyleneglycoles (PEGs) formed as by-products from NPEO degradation to residual concentrations below the limit of detection. Moreover, the treatment processes were also used to study the oxidative degradation of nonylphenoxy acetic acid (NPEC) and of nonylphenol (NP) which are formed as by-products from biodegradation of NPEOs.


Sign in / Sign up

Export Citation Format

Share Document