Physical Properties of Chitosan Edible Films Incorporated with Essential Oil Monomers

2012 ◽  
Vol 550-553 ◽  
pp. 993-999 ◽  
Author(s):  
Yun Bin Zhang ◽  
Jun Peng

In this study, physical properties of chitosan edible films incorporated with essential oil monomers were tested. Emulsifying nature of chitosan could be combined essential oil monomer forming emulsions, hence homogeneous, thin and pale yellow membranes were achieved. With different of the essential oil monomer content, the nature of the films had undergone a drastic change. Water-solubility and water vapor permeability of chitosan edible films reduced when essential oil monomers concentration increased. All the mechanical properties(tensile strength and elongation) increased when essential oil monomers concentration gradual increased. Compared with single chitosan films, essential oil-chitosan films have been greatly enhanced their mechanical properties and antibacterial activities.

2012 ◽  
Vol 560-561 ◽  
pp. 361-367 ◽  
Author(s):  
Yun Bin Zhang ◽  
Juang Jiang

In this study, physical properties and antimicrobial activity of soy protein isolate edible films incorporated with essential oil monomers were tested. Adding amount of essential oil monomers could significantly change the physical properties of the films. Water-solubility of soy protein isolate edible films could be significantly reduced when adding essential oil monomers. With the essential oil monomers’ content increasing, the water vapor permeability increased at the beginning and then decreased. Tensile strength reduced with cinnamicaldehyde and eugenol content increasing, but the tensile strength of cinnamaldehyde-eugenol (1:1) compound films reduced at first and then increased. The breaking elongation of cinnamaldehyde-eugenol (1:1) compound edible films was the highest. Using cinnamaldehyde, eugenol and cinnamaldehyde-eugenol (1:1) compound as the antibacterial agent respectively, antibacterial activities of soy protein isolate edible films incorporated with1, 2, 3, 4, 5and6% essential oil monomer were evaluated against Escherichia coli, we found that antibacterial activities of soy protein isolate edible films incorporated with essential oil monomers were significant, film containing cinnamaldehyde was the most effective.


2011 ◽  
Vol 87 ◽  
pp. 213-222 ◽  
Author(s):  
Gui Yun Chen ◽  
Qiao Lei

Edible films based on whey protein isolate and sodium caseinate were prepared by uniform design method. Glycerol has been incorporated into the edible films as a plasticizer. For all types of films, the influences of components and forming temperature on film properties, such as mechanical properties, water solubility, optical properties, gas and water vapor permeability were investigated. The results suggested that glycerol was the most important factor influencing all the properties of edible composite protein films. However, both increases of sodium caseinate concentration and glycerol content contributed to decrease the barrier properties of gas and water vapor. Among the films studied, group D (prepared with 5% whey protein isolate, 2% sodium caseinate, 50% glycerol at the temperature of 50 °C) showed moderate mechanical properties, optical properties, water solubility and maximum barrier properties of gas and water vapor, with tensile strength=5.85MPa, elongation=101.20%, transparency=91.4%, gas permeability rate=49.92cm3m-2d-10.1MPa-1and water vapor permeability of 0.128×10-11g m-1s-1Pa-1, 0.260×10-11g m-1s-1Pa-1, 0.513×10-11g m-1s-1Pa-1, 1.252×10-11g m-1s-1Pa-1at the RH gradient of 10-40%, 10-50%, 10-60%, 10-70%, respectively.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 963
Author(s):  
Pornchai Rachtanapun ◽  
Warinporn Klunklin ◽  
Pensak Jantrawut ◽  
Kittisak Jantanasakulwong ◽  
Yuthana Phimolsiripol ◽  
...  

Curcumin is a phenolic compound derived from turmeric roots (Curcuma longa L.). This research studied the effects of curcumin extract on the properties of chitosan films. The film characteristics measured included mechanical properties, visual aspects, color parameters, light transmission, moisture content, water solubility, water vapor permeability, infrared spectroscopy, and antioxidant activity. The results suggest that adding curcumin to chitosan-based films increases yellowness and light barriers. Infrared spectroscopy analysis showed interactions between the phenolic compounds of the extract and the chitosan, which may have improved the mechanical properties and reduced the moisture content, water solubility, and water vapor permeability of the films. The antioxidant activity of the films increased with increasing concentrations of the curcumin extract. This study shows the potential benefits of incorporating curcumin extract into chitosan films used as active packaging.


Author(s):  
F. Salar Behrestaghi ◽  
S. Bahram ◽  
P. Ariaii

Background: Edible films and coatings are biodegradable that can preserve the quality and extend the shelf life of foods. The aim of this study was to investigate the physical and mechanical properties, and antimicrobial activity of carboxymethyl cellulose (CMC) film containing Artemisia sieberi Essential Oil (AEO). Methods: The studied parameters were the antibacterial activity and physical properties, including Water Vapor Permeability (WVP), Contact Angle (CA), solubility, Moisture Content (MC), and surface color; as well as mechanical properties including Elongation at break% (E%) and Tensile Strength (TS) of CMC incorporated with AEO at levels of 0 (control), 0.5, 1, and 1.5% v/v. Data were statistically analyzed by SPSS software. Results: Camphor (36.38%), 1,8-cineole (15.89%), β-Thujone (6.7%), and camphanone (6.2%) were the main components of AEO. The edible CMC film showed increase in WVP, contact angle, E%, darker color, and yellowness, with decreases in film solubility, MC, and TS after the incorporation of AEO. CMC film with 1.5% of AEO showed the highest a* (greenness) and b* (yellowness) values. The inhibition zones were 9.33, 11.5, and 17.30 mm for Staphylococcus aureus; and 8, 11.50, and 14.33 mm for Escherichia coli at AEO levels of 0.5, 1, and 1.5%, respectively. Conclusion: The overall results of this study showed that CMC films enriched with AEO could be beneficial in food packaging to retard food deterioration.


Coatings ◽  
2017 ◽  
Vol 7 (11) ◽  
pp. 183 ◽  
Author(s):  
Thi Cao ◽  
So-Young Yang ◽  
Kyung Song

In this study, barnyard millet starch (BMS) was used to prepare edible films. Antioxidant activity was conferred to the BMS film by incorporating borage seed oil (BO). The physical, optical, and thermal properties as well as antioxidant activities of the films were evaluated. The incorporation of BO into the BMS films decreased the tensile strength from 9.46 to 4.69 MPa and increased the elongation at break of the films from 82.49% to 103.87%. Water vapor permeability, water solubility, and moisture content of the BMS films decreased with increasing BO concentration, whereas Hunter b value and opacity increased, L and a values of the films decreased. The BMS films containing BO exhibited antioxidant activity that increased proportionally with increased BO concentration. In particular, the BMS film with 1.0% BO exhibited the highest antioxidant activity and light barrier properties among the BMS films. Therefore, the BMS films with added BO can be used as an antioxidant packaging material.


Author(s):  
Neda Maftoonazad ◽  
Hosahalli S. Ramaswamy ◽  
Michele Marcotte

The moisture sorption behavior of pectin films formulated with different sorbitol content was evaluated and films with different equilibrium moisture contents were obtained. Different models were used to describe the moisture sorption isotherms (MSI) of pectin films, sorbitol and pectin powder. Based on changes observed in MSI, sorbitol was found to strongly interact with pectin polymers. Incorporation of sorbitol in pectin films resulted in lower equilibrium moisture contents at low to intermediate water activities (aw), but much higher moisture contents at aw > 0.53. Estimates of monolayer moisture values (1.53 – 3.81 g H2O kg-1 solids) were obtained by the application of Guggenheim-Anderson-DeBoer (GAB) model. A differential mechanical analyzer (DMA) was used for mechanical properties of formulated films while a differential scanning calorimeter (DSC) was used for thermal properties and glass transition temperature (Tg). With both DMA and DSC tests, the strong plasticizing action of water and sorbitol was evident. Tg vs. moisture content data were successfully fitted to the Fox empirical model. Multi-frequency DMA measurements provided estimates for the apparent activation energy (Ea) of the second glass transition in the range of 131-184 kJ/mol; the values for Ea decreased with increasing sorbitol concentration. Water vapor permeability (WVP) and mechanical properties of the films were also analyzed under varying sorbitol and moisture contents. Increasing moisture or addition of sorbitol to pectin films increased the elongation at break, but decreased the tensile strength, modulus of elasticity and Tg, and increased WVP of the films.


2015 ◽  
Vol 4 (2) ◽  
pp. 103-14
Author(s):  
Gholamreza Kavoosi ◽  
Amin Shakiba ◽  
Mahmood Ghorbani ◽  
Seyed Mohammad Mahdi Dadfar ◽  
Amin Mohammadi Purfard

Background: Development of biodegradable and biocompatible films based on protein polymer with strong antioxidant and antibacterial activities has gradually obtained extensive concern in the world. In this study, the improvement of gelatin film properties incorporated with Ferula assa-foetida essential oil (FAO) as a potential antioxidant/antibacterial wound dressing film was investigated. Materials and Methods: Gelatin films were prepared from gelatin solutions (10% w/v) containing different concentration of FAO. The effect of FAO addition on water solubility, water swelling, water vapor permeability, mechanical behavior, light barrier properties as well as antioxidant and antibacterial activities of the films were examined. Results: Water solubility, water swelling and water vapor permeability for pure gelatin films were 29 ± 1.6%, 396 ± 8%, 0.23 ± 0.018 g.mm/m2.h, respectively. Incorporation of FAO into gelatin films caused a significant decrease in swelling and increase in solubility and water vapor permeability. Tensile strength, elastic modulus and elongation at break for pure gelatin films were 4.2 ± 0.4 MPa, 5.8 ± 4.2 MPa, 128 ± 8 %, respectively. Incorporation of FAO into gelatin films caused a significant decrease in tensile strength and elastic modulus and increase in elongation at break of the films. Gelatin film showed UV-visible light absorbance ranging from 280 to 480 nm with maximum absorbance at 420 nm. Gelatin/FAO films also exhibited excellent antioxidant ad antimicrobial activities. Conclusions: Our results suggested that gelatin/FAO films could be used as active films due to their excellent antioxidant and antimicrobial features for different biomedical applications including wound-dressing materials.[GMJ.2015;4(2):103-14]


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4406
Author(s):  
Anita Kwaśniewska ◽  
Michał Świetlicki ◽  
Adam Prószyński ◽  
Grzegorz Gładyszewski

In the present study, starch/powdered activated carbon composite films were prepared by incorporating various amounts of powdered activated carbon (PAC)—1–5, 10, and 15 %—into a starch matrix, using the solvent casting method. The effect of PAC addition on the biopolymer film was investigated. The mechanical properties were examined by ultra-nanoindentation, nanoscratch, and micro-tensile tests. Since the mechanical properties of biopolymer films are correlated with their structure, the effect of PAC addition was tested using X-ray diffraction. The surface parameters morphology and wettability were analyzed by atomic force microscopy (AFM) and contact angle measurements. The barrier properties were examined by determining water vapor permeability and the water solubility index. The obtained results did not show a monotonic dependence of the mechanical parameters on PAC content, with the exception of the maximum strain, which decreased as the amount of the additive increased. The visible effect of PAC addition was manifested in changes in the adhesive force value and in water vapor permeability (WVP). The barrier properties decreased with the increase of the filler content.


Sign in / Sign up

Export Citation Format

Share Document